Zuckerberg’s Gamble: Risks and Rewards in AI Talent Acquisition


Mark Zuckerberg’s recent move to bring Alex Wang and his team into Meta represents a bold and strategic maneuver amid the rapid advancement of large models and AGI development. Putting aside the ethical considerations, Zuckerberg’s approach—laying off staff, then offering sky-high compensation packages with a 48-hour ultimatum to Top AI scientists and engineers from OpenAI , alongside Meta’s acquisition of a 49% stake in Scale AI—appears to serve multiple objectives:

1. Undermining Competitors

By poaching key talent from rival companies, Meta not only weakens their R&D teams and disrupts their momentum but also puts pressure on Google, OpenAI, and others to reassess their partnerships with Scale AI. Meta’s investment may further marginalize these competitors by injecting uncertainty into their collaboration with Scale AI.

2. Reinvigorating the Internal Team

Bringing in fresh blood like Alex Wang’s team and Open AI Top talents could reenergize Meta’s existing research units. A successful “talent reset” may help the company gain a competitive edge in the race toward AGI.

3. Enhancing Brand Visibility

Even if the move doesn’t yield immediate results, it has already amplified Meta’s media presence, boosting its reputation as a leader in AI innovation.

From both a talent acquisition and PR standpoint, this appears to be a masterstroke for Meta.


However, the strategy is not without significant risks:

1. Internal Integration and Morale Challenges

The massive compensation packages offered to those talents could trigger resentment among existing employees—especially in the wake of recent layoffs—due to perceived pay inequity. This may lower morale and even accelerate internal attrition. Cultural differences between the incoming and incumbent teams could further complicate internal integration and collaboration.

2. Return on Investment and Performance Pressure

Meta’s substantial investment in Alex Wang and Scale AI comes with high expectations for short-term deliverables. In a domain as uncertain as AGI, both the market and shareholders will be eager for breakthroughs. If Wang’s team fails to deliver measurable progress quickly, Meta could face mounting scrutiny and uncertainty over the ROI.

3. Impacts on Scale AI and the Broader Ecosystem

Alex Wang stepping away as CEO is undoubtedly a major loss for Scale AI, even if he retains a board seat. Leadership transitions and potential talent departures may follow. Moreover, Scale AI’s history of legal and compliance issues could reflect poorly on Meta’s brand—especially if public perception ties Meta to those concerns despite holding only non-voting shares. More broadly, Meta’s aggressive “poaching” approach may escalate the AI talent war, drive up industry-wide costs, and prompt renewed debate over ethics and hiring norms in the AI sector.


Conclusion
Meta’s latest move is undeniably ambitious. While it positions the company aggressively in the AGI race, it also carries notable risks in terms of internal dynamics, ROI pressure, and broader ecosystem disruption. Only time will tell whether this bold gamble pays off.

Our Future with AI: Three Strategies to Ensure It Stays on Our Side

As Artificial Intelligence rapidly evolves, ensuring it remains a beneficial tool rather than a source of unforeseen challenges is paramount; this article explores three critical strategies to keep AI firmly on our side. Our AI researchers can draw lessons from cybersecurity, robotics, and astrobiology side. Source: IEEE Spectrum April 2025; 3 Ways to Keep AI on Our Side: AI Researchers can Draw Lessons from Cybersecurity, Robotics, and Astrobiology

Play the podcast

中文翻译摘要

这篇文章提出了确保人工智能安全和有益发展的三个独特且跨学科的策略。

应对人工智能的独特错误模式:布鲁斯·施奈尔(Bruce Schneier)和内森·E·桑德斯(Nathan E. Sanders)(网络安全视角)指出,人工智能系统,特别是大型语言模型(LLMs),其错误模式与人类错误显著不同——它们更难预测,不集中在知识空白处,且缺乏对自身错误的自我意识。他们提出双重研究方向:一是工程化人工智能以产生更易于人类理解的错误(例如,通过RLHF等精炼的对齐技术);二是开发专门针对人工智能独特“怪异”之处的新型安全与纠错系统(例如,迭代且多样化的提示)。

更新伦理框架以打击人工智能欺骗:达里乌什·杰米尔尼亚克(Dariusz Jemielniak)(机器人与互联网文化视角)认为,鉴于人工智能驱动的欺骗行为(包括深度伪造、复杂的错误信息宣传和操纵性人工智能互动)日益增多,艾萨克·阿西莫夫(Isaac Asimov)传统的机器人三定律已不足以应对现代人工智能。他提出一条“机器人第四定律”:机器人或人工智能不得通过冒充人类来欺骗人类。实施这项法律将需要强制性的人工智能披露、清晰标注人工智能生成内容、技术识别标准、法律执行以及公众人工智能素养倡议,以维护人机协作中的信任。

建立通用人工智能(AGI)检测与互动的严格协议:埃德蒙·贝戈利(Edmon Begoli)和阿米尔·萨多夫尼克(Amir Sadovnik)(天体生物学/SETI视角)建议,通用人工智能(AGI)的研究可以借鉴搜寻地外文明(SETI)的方法论。他们主张对AGI采取结构化的科学方法,包括:制定清晰、多学科的“通用智能”及相关概念(如意识)定义;创建超越图灵测试局限性的鲁棒、新颖的AGI检测指标和评估基准;以及制定国际公认的检测后协议,以便在AGI出现时进行验证、确保透明度、安全性和伦理考量。

总而言之,这些观点强调了迫切需要创新、多方面的方法——涵盖安全工程、伦理准则修订以及严格的科学协议制定——以主动管理先进人工智能系统的社会融入和潜在未来轨迹。


Abstract: this article presents three distinct, cross-disciplinary strategies for ensuring the safe and beneficial development of Artificial Intelligence.

Addressing Idiosyncratic AI Error Patterns (Cybersecurity Perspective): Bruce Schneier and Nathan E. Sanders highlight that AI systems, particularly Large Language Models (LLMs), exhibit error patterns significantly different from human mistakes—being less predictable, not clustered around knowledge gaps, and lacking self-awareness of error. They propose a dual research thrust: engineering AIs to produce more human-intelligible errors (e.g., through refined alignment techniques like RLHF) and developing novel security and mistake-correction systems specifically designed for AI’s unique “weirdness” (e.g., iterative, varied prompting).

Updating Ethical Frameworks to Combat AI Deception (Robotics & Internet Culture Perspective): Dariusz Jemielniak argues that Isaac Asimov’s traditional Three Laws of Robotics are insufficient for modern AI due to the rise of AI-enabled deception, including deepfakes, sophisticated misinformation campaigns, and manipulative AI interactions. He proposes a “Fourth Law of Robotics”: A robot or AI must not deceive a human being by impersonating a human being. Implementing this law would necessitate mandatory AI disclosure, clear labeling of AI-generated content, technical identification standards, legal enforcement, and public AI literacy initiatives to maintain trust in human-AI collaboration.

Establishing Rigorous Protocols for AGI Detection and Interaction (Astrobiology/SETI Perspective): Edmon Begoli and Amir Sadovnik suggest that research into Artificial General Intelligence (AGI) can draw methodological lessons from the Search for Extraterrestrial Intelligence (SETI). They advocate for a structured scientific approach to AGI that includes:

  • Developing clear, multidisciplinary definitions of “general intelligence” and related concepts like consciousness.
  • Creating robust, novel metrics and evaluation benchmarks for detecting AGI, moving beyond limitations of tests like the Turing Test.
  • Formulating internationally recognized post-detection protocols for validation, transparency, safety, and ethical considerations, should AGI emerge.

Collectively, these perspectives emphasize the urgent need for innovative, multi-faceted approaches—spanning security engineering, ethical guideline revision, and rigorous scientific protocol development—to proactively manage the societal integration and potential future trajectory of advanced AI systems.


Here are the full detailed content:

3 Ways to Keep AI on Our Side

AS ARTIFICIAL INTELLIGENCE reshapes society, our traditional safety nets and ethical frameworks are being put to the test. How can we make sure that AI remains a force for good? Here we bring you three fresh visions for safer AI.

  • In the first essay, security expert Bruce Schneier and data scientist Nathan E. Sanders explore how AI’s “weird” error patterns create a need for innovative security measures that go beyond methods honed on human mistakes.
  • Dariusz Jemielniak, an authority on Internet culture and technology, argues that the classic robot ethics embodied in Isaac Asimov’s famous rules of robotics need an update to counterbalance AI deception and a world of deepfakes.
  • And in the final essay, the AI researchers Edmon Begoli and Amir Sadovnik suggest taking a page from the search for intelligent life in the stars; they propose rigorous standards for detecting the possible emergence of human-level AI intelligence.

As AI advances with breakneck speed, these cross-disciplinary strategies may help us keep our hands on the reins.


AI Mistakes Are Very Different from Human Mistakes

WE NEED NEW SECURITY SYSTEMS DESIGNED TO DEAL WITH THEIR WEIRDNESS

Bruce Schneier & Nathan E. Sanders

HUMANS MAKE MISTAKES all the time. All of us do, every day, in tasks both new and routine. Some of our mistakes are minor, and some are catastrophic. Mistakes can break trust with our friends, lose the confidence of our bosses, and sometimes be the difference between life and death.

Over the millennia, we have created security systems to deal with the sorts of mistakes humans commonly make. These days, casinos rotate their dealers regularly, because they make mistakes if they do the same task for too long. Hospital personnel write on patients’ limbs before surgery so that doctors operate on the correct body part, and they count surgical instruments to make sure none are left inside the body. From copyediting to double-entry bookkeeping to appellate courts, we humans have gotten really good at preventing and correcting human mistakes.

Humanity is now rapidly integrating a wholly different kind of mistakemaker into society: AI. Technologies like large language models (LLMs) can perform many cognitive tasks traditionally fulfilled by humans, but they make plenty of mistakes. You may have heard about chatbots telling people to eat rocks or add glue to pizza. What differentiates AI systems’ mistakes from human mistakes is their weirdness. That is, AI systems do not make mistakes in the same ways that humans do.

Much of the risk associated with our use of AI arises from that difference. We need to invent new security systems that adapt to these differences and prevent harm from AI mistakes.

IT’S FAIRLY EASY to guess when and where humans will make mistakes. Human errors tend to come at the edges of someone’s knowledge: Most of us would make mistakes solving calculus problems. We expect human mistakes to be clustered: A single calculus mistake is likely to be accompanied by others. We expect mistakes to wax and wane depending on factors such as fatigue and distraction. And mistakes are typically accompanied by ignorance: Someone who makes calculus mistakes is also likely to respond “I don’t know” to calculus-related questions.

To the extent that AI systems make these humanlike mistakes, we can bring all of our mistake-correcting systems to bear on their output. But the current crop of AI models—particularly LLMs—make mistakes differently.

AI errors come at seemingly random times, without any clustering around particular topics. The mistakes tend to be more evenly distributed through the knowledge space; an LLM might be equally likely to make a mistake on a calculus question as it is to propose that cabbages eat goats. And AI mistakes aren’t accompanied by ignorance. An LLM will be just as confident when saying something completely and obviously wrong as it will be when saying something true.

The inconsistency of LLMs makes it hard to trust their reasoning in complex, multistep problems. If you want to use an AI model to help with a business problem, it’s not enough to check that it understands what factors make a product profitable; you need to be sure it won’t forget what money is.

THIS SITUATION INDICATES two possible areas of research: engineering LLMs to make mistakes that are more humanlike, and building new mistake-correcting systems that deal with the specific sorts of mistakes that LLMs tend to make.

We already have some tools to lead LLMs to act more like humans. Many of these arise from the field of “alignment” research, which aims to make models act in accordance with the goals of their human developers. One example is the technique that was arguably responsible for the breakthrough success of ChatGPT: reinforcement learning with human feedback. In this method, an AI model is rewarded for producing responses that get a thumbs-up from human evaluators. Similar approaches could be used to induce AI systems to make humanlike mistakes, particularly by penalizing them more for mistakes that are less intelligible.

When it comes to catching AI mistakes, some of the systems that we use to prevent human mistakes will help. To an extent, forcing LLMs to double-check their own work can help prevent errors. But LLMs can also confabulate seemingly plausible yet truly ridiculous explanations for their flights from reason.

Other mistake-mitigation systems for AI are unlike anything we use for humans. Because machines can’t get fatigued or frustrated, it can help to ask an LLM the same question repeatedly in slightly different ways and then synthesize its responses. Humans won’t put up with that kind of annoying repetition, but machines will.

RESEARCHERS ARE still struggling to understand where LLM mistakes diverge from human ones. Some of the weirdness of AI is actually more humanlike than it first appears.

Small changes to a query to an LLM can result in wildly different responses, a problem known as prompt sensitivity. But, as any survey researcher can tell you, humans behave this way, too. The phrasing of a question in an opinion poll can have drastic impacts on the answers.

LLMs also seem to have a bias toward repeating the words that were most common in their training data—for example, guessing familiar place names like “America” even when asked about more exotic locations. Perhaps this is an example of the human “availability heuristic” manifesting in LLMs; like humans, the machines spit out the first thing that comes to mind rather than reasoning through the question. Also like humans, perhaps, some LLMs seem to get distracted in the middle of long documents; they remember more facts from the beginning and end.

In some cases, what’s bizarre about LLMs is that they act more like humans than we think they should. Some researchers have tested the hypothesis that LLMs perform better when offered a cash reward or threatened with death. It also turns out that some of the best ways to “jailbreak” LLMs (getting them to disobey their creators’ explicit instructions) look a lot like the kinds of social-engineering tricks that humans use on each otherfor example, pretending to be someone else or saying that the request is just a joke. But other effective jailbreaking techniques are things no human would ever fall for. One group found that if they used ASCII art (constructions of symbols that look like words or pictures) to pose dangerous questions, like how to build a bomb, the LLM would answer them willingly.

Humans may occasionally make seemingly random, incomprehensible, and inconsistent mistakes, but such occurrences are rare and often indicative of more serious problems. We also tend not to put people exhibiting these behaviors in decision-making positions. Likewise, we should confine AI decision-making systems to applications that suit their actual abilities—while keeping the potential ramifications of their mistakes firmly in mind.


Asimov’s Laws of Robotics Need an Update for AI PROPOSING A FOURTH LAW OF ROBOTICS

Dariusz Jemielniak

IN 1942, the legendary science fiction author Isaac Asimov introduced his Three Laws of Robotics in his short story “Runaround.” The laws were later popularized in his seminal story collection I, Robot.

  1. FIRST LAW: A robot may not injure a human being or, through inaction, allow a human being to come to harm.
  2. SECOND LAW: A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.
  3. THIRD LAW: A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.

While drawn from works of fiction, these laws have shaped discussions of robot ethics for decades. And as AI systems—which can be considered virtual robots—have become more sophisticated and pervasive, some technologists have found Asimov’s framework useful for considering the potential safeguards needed for AI that interacts with humans.

But the existing three laws are not enough. Today, we are entering an era of unprecedented human-AI collaboration that Asimov could hardly have envisioned. The rapid advancement of generative AI, particularly in language and image generation, has created challenges beyond Asimov’s original concerns about physical harm and obedience.

THE PROLIFERATION of AI-enabled deception is particularly concerning. According to the FBI’s most recent Internet Crime Report, cybercrime involving digital manipulation and social engineering results in annual losses counted in the billions. The European Union Agency for Cybersecurity’s ENISA Threat Landscape 2023 highlighted deepfakes—synthetic media that appear genuine—as an emerging threat to digital identity and trust.

Social-media misinformation is a huge problem today. I studied it during the pandemic extensively and can say that the proliferation of generative AI tools has made its detection increasingly difficult. AI-generated propaganda is often just as persuasive as or even more persuasive than traditional propaganda, and bad actors can very easily use AI to create convincing content. Deepfakes are on the rise everywhere. Botnets can use AI-generated text, speech, and video to create false perceptions of widespread support for any political issue. Bots are now capable of making phone calls while impersonating people, and AI scam calls imitating familiar voices are increasingly common. Any day now, we can expect a boom in video-call scams based on AI-rendered overlay avatars, allowing scammers to impersonate loved ones and target the most vulnerable populations.

Even more alarmingly, children and teenagers are forming emotional attachments to AI agents, and are sometimes unable to distinguish between interactions with real friends and bots online. Already, there have been suicides attributed to interactions with AI chatbots.

In his 2019 book Human Compatible (Viking), the eminent computer scientist Stuart Russell argues that AI systems’ ability to deceive humans represents a fundamental challenge to social trust. This concern is reflected in recent policy initiatives, most notably the European Union’s AI Act, which includes provisions requiring transparency in AI interactions and transparent disclosure of AI-generated content. In Asimov’s time, people couldn’t have imagined the countless ways in which artificial agents could use online communication tools and avatars to deceive humans.

Therefore, we must make an addition to Asimov’s laws.

FOURTH LAW: A robot or AI must not deceive a human being by impersonating a human being.

WE NEED CLEAR BOUNDARIES. While human-AI collaboration can be constructive, AI deception undermines trust and leads to wasted time, emotional distress, and misuse of resources. Artificial agents must identify themselves to ensure our interactions with them are transparent and productive. AI-generated content should be clearly marked unless it has been significantly edited and adapted by a human.

Implementation of this Fourth Law would require

  • mandatory AI disclosure in direct interactions,
  • clear labeling of AI-generated content,
  • technical standards for AI identification,
  • legal frameworks for enforcement, and
  • educational initiatives to improve AI literacy.

Of course, all this is easier said than done. Enormous research efforts are already underway to find reliable ways to watermark or detect AI-generated text, audio, images, and videos. But creating the transparency I’m calling for is far from a solved problem.

The future of human-AI collaboration depends on maintaining clear distinctions between human and artificial agents. As noted in the IEEE report Ethically Aligned Design, transparency in AI systems is fundamental to building public trust and ensuring the responsible development of artificial intelligence.

Asimov’s complex stories showed that even robots that tried to follow the rules often discovered there were unintended consequences to their actions. Still, having AI systems that are at least trying to follow Asimov’s ethical guidelines would be a very good start.


What Can AI Researchers Learn from Alien Hunters?

THE SETI INSTITUTE’S APPROACH HAS LESSONS FOR RESEARCH ON ARTIFICIAL GENERAL INTELLIGENCE

Edmon Begoli & Amir Sadovnik

THE EMERGENCE OF artificial general intelligence (systems that can perform any intellectual task a human can) could be the most important event in human history. Yet AGI remains an elusive and controversial concept. We lack a clear definition of what it is, we don’t know how to detect it, and we don’t know how to interact with it if it finally emerges.

What we do know is that today’s approaches to studying AGI are not nearly rigorous enough. Companies like OpenAI are actively striving to create AGI, but they include research on AGI’s social dimensions and safety issues only as their corporate leaders see fit. And academic institutions don’t have the resources for significant efforts.

We need a structured scientific approach to prepare for AGI. A useful model comes from an unexpected field: the search for extraterrestrial intelligence, or SETI. We believe that the SETI Institute’s work provides a rigorous framework for detecting and interpreting signs of intelligent life.

The idea behind SETI goes back to the beginning of the space age. In their 1959 Nature paper, the physicists Giuseppe Cocconi and Philip Morrison suggested ways to search for interstellar communication. Given the uncertainty of extraterrestrial civilizations’ existence and sophistication, they theorized about how we should best “listen” for messages from alien societies.

We argue for a similar approach to studying AGI, in all its uncertainties. The last few years have shown a vast leap in AI capabilities. The large language models (LLMs) that power chatbots like ChatGPT and enable them to converse convincingly with humans have renewed the discussion of AGI. One notable 2023 preprint even argued that ChatGPT shows “sparks” of AGI, and today’s most cutting-edge language models are capable of sophisticated reasoning and outperform humans in many evaluations.

While these claims are intriguing, there are reasons to be skeptical. In fact, a large group of scientists have argued that the current set of tools won’t bring us any closer to true AGI. But given the risks associated with AGI, if there is even a small likelihood of it occurring, we must make a serious effort to develop a standard definition of AGI, establish a SETI-like approach to detecting it, and devise ways to safely interact with it if it emerges.

THE CRUCIAL FIRST step is to define what exactly to look for. In SETI’s case, researchers decided to look for certain narrowband signals that would be distinct from other radio signals present in the cosmic background. These signals are considered intentional and only produced by intelligent life. None have been found so far.

In the case of AGI, matters are far more complicated. Today, there is no clear definition of artificial general intelligence. The term is hard to define because it contains other imprecise and controversial terms. Although intelligence has been defined by the Oxford English Dictionary as “the ability to acquire and apply knowledge and skills,” there is still much debate on which skills are involved and how they can be measured. The term general is also ambiguous. Does an AGI need to be able to do absolutely everything a human can do?

One of the first missions of a “SETI for AGI” project must be to clearly define the terms general and intelligence so the research community can speak about them concretely and consistently. These definitions need to be grounded in disciplines such as computer science, measurement science, neuroscience, psychology, mathematics, engineering, and philosophy.

There’s also the crucial question of whether a true AGI must include consciousness and self-awareness. These terms also have multiple definitions, and the relationships between them and intelligence must be clarified. Although it’s generally thought that consciousness isn’t necessary for intelligence, it’s often intertwined with discussions of AGI because creating a self-aware machine would have many philosophical, societal, and legal implications.

NEXT COMES the task of measurement. In the case of SETI, if a candidate narrowband signal is detected, an expert group will verify that it is indeed from an extraterrestrial source. They’ll use established criteria—for example, looking at the signal type and checking for repetition—and conduct assessments at multiple facilities for additional validation.

How to best measure computer intelligence has been a long-standing question in the field. In a famous 1950 paper, Alan Turing proposed the “imitation game,” more widely known as the Turing Test, which assesses whether human interlocutors can distinguish if they are chatting with a human or a machine. Although the Turing Test was useful in the past, the rise of LLMs has made clear that it isn’t a complete enough test to measure intelligence. As Turing himself noted, the relationship between imitating language and thinking is still an open question.

Future appraisals must be directed at different dimensions of intelligence. Although measures of human intelligence are controversial, IQ tests can provide an initial baseline to assess one dimension. In addition, cognitive tests on topics such as creative problem-solving, rapid learning and adaptation, reasoning, and goal-directed behavior would be required to assess general intelligence.

But it’s important to remember that these cognitive tests were designed for humans and might contain assumptions that might not apply to computers, even those with AGI abilities. For example, depending on how it’s trained, a machine may score very high on an IQ test but remain unable to solve much simpler tasks. In addition, an AI may have new abilities that aren’t measurable by our traditional tests. There’s a clear need to design novel evaluations that can alert us when meaningful progress is made toward AGI.

IF WE DEVELOP AGI, we must be prepared to answer questions such as: Is the new form of intelligence a new form of life? What kinds of rights does it have? What are the potential safety concerns, and what is our approach to containing the AGI entity?

Here, too, SETI provides inspiration. SETI’s postdetection protocols emphasize validation, transparency, and international cooperation, with the goal of maximizing the credibility of the process, minimizing sensationalism, and bringing structure to such a profound event. Likewise, we need internationally recognized AGI protocols to bring transparency to the entire process, apply safety-related best practices, and begin the discussion of ethical, social, and philosophical concerns.

We readily acknowledge that the SETI analogy can go only so far. If AGI emerges, it will be a human-made phenomenon. We will likely gradually engineer AGI and see it slowly emerge, so detection might be a process that takes place over a period of years, if not decades. In contrast, the existence of extraterrestrial life is something that we have no control over, and contact could happen very suddenly.

The consequences of a true AGI are entirely unpredictable. To best prepare, we need a methodical approach to defining, detecting, and interacting with AGI, which could be the most important development in human history.


Is the AI PC a Gimmick or a Faster Carriage?

TL,DL: The post discusses the impact of AI on productivity, particularly through the emergence of AI PCs powered by localized edge AI. It highlights how large language models and the Core Ultra processor enable AI PCs to handle diverse tasks efficiently and securely. The article also touches on the practical applications and benefits of AI PCs in various fields. The comprehensive overview emphasizes the transformative potential of AI PCs and their pivotal role in shaping the future of computing.

Translation from the Source: AI PC 是噱头还是更快的马车?

Is AI a Bubble or a Marketing Gimmick?

Since 2023, everyone has known that AI is very hot, very powerful, and almost magical. It can generate articles with elegant language and write comprehensive reports, easily surpassing 80% or even more of human output. As for text-to-image generation, music composition, and even videos, there are often impressive results. There’s no need to elaborate on its hype…

For professions like designers and copywriters, generative AI has indeed helped them speed up the creative process, eliminating the need to start from scratch. Due to its high efficiency, some people in these positions might even face the worry of losing their jobs. But for ordinary people, aside from being a novelty, AI tools like OpenAI and Stable Diffusion don’t seem to provide much practical help for their work. After all, most people don’t need to write well-structured articles or compose poems regularly. Moreover, after seeing many AI outputs, they often feel that they are mostly correct but useless information—helpful, but not very impactful.

So, when a phone manufacturer says it will no longer produce “traditional phones,” people scoff. When the concept of an AI PC emerges, it’s hard not to see it as a marketing gimmick. However, after walking around the exhibition area at Intel’s 2024 commercial client AI PC product launch, I found AI to be more useful than I imagined. Yes, useful—not needing to be breathtaking, but very useful.

The fundamental change in experience brought by localized edge AI

Since it is a commercial PC, it cannot be separated from the productivity tool attribute. If you don’t buy the latest hardware and can’t run the latest software versions, it’s easy to be labeled as having “low application skills.” Take Excel as an example. The early understanding of efficiency in Excel was using formulas for automatic calculations. Later, it was about macro code for automatic data filtering, sorting, exporting, etc., though this was quite difficult. A few years ago, learning Python seemed to be the trend, and without it, one was not considered competent in data processing. Nowadays, with data visualization being the buzzword, most Excel users have to search for tutorials online and learn on the spot for unfamiliar formulas. Complex operations often require repeated attempts.

So, can adding “AI” to a PC or installing an AI assistant make it trendy? After experiencing it firsthand, I can confirm that the AI PC is far from superficial. There is a company called ExtendOffice, specializing in Office plugins, which effectively solves the pain points of using Excel awkwardly: you just state your intention, and the AI assistant directly performs operations on the Excel sheet, such as currency conversion or encrypting a column of data. There’s no need to figure out which formula or function corresponds to your needs, no need to search for tutorials, and it skips the step-by-step learning process—the AI assistant handles it immediately.

This highlights a particularly critical selling point of the AI PC: localization, and based on that, it can be embedded into workflows and directly participate in processing. We Chinese particularly love learning, always saying “teaching someone to fish is better than giving them a fish,” but the learning curve for fishing is too long. In an AI PC, you can get both the fish and the fishing skills because the fisherman (AI assistant) is always in front of you, not to mention it can also act as a chef or secretary.

Moreover, the “embedding” mentioned earlier is not limited to a specific operation (like adding a column of data or a formula to Excel). It can generate multi-step, cross-software operations. This demonstrates the advantage of large language models: they can accept longer inputs, understand, and break them down. For example, we can tell the AI PC: “Mute the computer, then open the last read document and send it to a certain email.” Notably, as per the current demonstration, there is no need to specify the exact document name; vague instructions are understandable. Another operation that pleasantly surprised me was batch renaming files. In Windows, batch renaming files requires some small techniques and can only change them into regular names (numbers, letter suffixes, etc.). But with the help of an AI assistant, we can make file names more personalized: adding relevant customer names, different styles, etc. This seemingly simple task actually involves looking at each file, extracting key information, and even describing some abstract information based on self-understanding, then individually writing new file names—a very tedious process that becomes time-consuming with many files. With the AI assistant, it’s just a matter of saying a sentence. Understanding longer contexts, multi-modal inputs, etc., all rely on the capabilities of large language models, but this is running locally, not relying on cloud inference. Honestly, no one would think that organizing file names in the local file system requires going to the cloud, right? The hidden breaks between the edge and the cloud indeed limit our imagination, so these local operations of the AI PC really opened my mind.

Compared to the early familiar cloud-based AI tools, localization brings many obvious benefits. For instance, even when offline, natural language processing and other operations can be completed. For those early users who heavily relied on large models and encountered service failures, “the sky is falling” was a pain point. Not to mention scenarios without internet, like on a plane, maintaining continuous availability is a basic need.

Local deployment can also address data security issues. Since the rise of large models, there have been frequent news of companies accidentally leaking data. Using ChatGPT for presentations, code reviews, etc., is great, but it requires uploading documents to the cloud. This has led many companies to outright ban employees from using ChatGPT. Subsequently, many companies chose to train and fine-tune private large models using open-source models and internal data, deploying them on their own servers or cloud hosts. Furthermore, we now see that a large model with 20 billion parameters can be deployed on an AI PC based on the Core Ultra processor.

These large models deployed on AI PCs have already been applied in various vertical fields such as education, law, and medicine, generating knowledge graphs, contracts, legal opinions, and more. For example, inputting a case into ThunderSoft’s Cube intelligent legal assistant can analyze the case, find relevant legal provisions, draft legal documents, etc. In this scenario, the privacy of the case should be absolutely guaranteed, and lawyers wouldn’t dare transmit such documents to the cloud for processing. Doctors have similar constraints. For research based on medical cases and genetic data, conducting genetic target and pharmacological analyses on a PC eliminates the need to purchase servers or deploy private clouds.

Incidentally, the large model on the AI PC also makes training simpler than imagined. Feeding the local files visible to you into the AI assistant can solve the problem of “correct nonsense” that previous chatbots often produced. For example, generating a quote email template with AI is easy, but it’s normal for a robot to not understand key information like prices, which requires human refinement. If a person handles this, preparing a price list in advance is a reasonable requirement, right? Price lists and FAQs need to be summarized and refined, then used to train newcomers more effectively—that’s the traditional view. Local AI makes this simple: let it read the Outlook mailbox, and it will learn the corresponding quotes from historical emails. The generated emails won’t just be template-level but will be complete with key elements. Our job will be to confirm whether the AI’s output is correct. And these learning outcomes can be inherited.

Three Major AI Engines Support Local Large Models

In the information age, we have experienced several major technological transformations. First was the popularization of personal computers, then the internet, and then mobile internet. Now we are facing the empowerment and even restructuring of productivity by AI. The AI we discuss today is not large-scale clusters for training or inference in data centers but the PCs at our fingertips. AIGC, video production, and other applications for content creators have already continuously amazed the public. Now we further see that AI PCs can truly enhance the work efficiency of ordinary office workers: handling trivial tasks, making presentations, writing emails, finding legal provisions, etc., and seamlessly filling in some of our skill gaps, such as using unfamiliar Excel functions, creating supposedly sophisticated knowledge graphs, and so on. All this relies not only on the “intelligent emergence” of large language models but also on sufficiently powerful performance to support local deployment.

We frequently mention the “local deployment” of large models, which relies on strong AI computing power at the edge. The so-called AI PC relies on the powerful CPU+GPU+NPU triad AI engines of the Core Ultra processor, whose computing power is sufficient to support the local operation of a large language model with 20 billion parameters. As for AIGC applications represented by text-to-image generation, they are relatively easy.

Fast CPU Response: The CPU can be used to run traditional, diverse workloads and achieve low latency. The Core Ultra adopts advanced Intel 4 manufacturing process, allowing laptops to have up to 16 cores and 22 threads, with a turbo frequency of up to 5.1GHz.

High GPU Throughput: The GPU is ideal for large workloads that require parallel throughput. The Core Ultra comes standard with Arc GPU integrated graphics. The Core Ultra 7 165H includes 8 Xe-LPG cores (128 vector engines), and the Core Ultra 5 125H includes 7. Moreover, this generation of integrated graphics supports AV1 hardware encoding, enabling faster output of high-quality, high-compression-rate videos. With its leading encoding and decoding capabilities, the Arc GPU has indeed built a good reputation in the video editing industry. With a substantial increase in vector engine capabilities, many content creation ISVs have demonstrated higher efficiency in smart keying, frame interpolation, and other functions based on AI PCs.

Efficient NPU: The newly introduced NPU (Neural Processing Unit) in the Core Ultra provides 10 times the efficiency of traditional CPUs and GPUs in processing AI workloads. As an AI acceleration engine, it allows the NPU to handle high-complexity, high-demand AI workloads, greatly reducing energy consumption.

Edge AI has unlimited possibilities, and its greatest value is precisely in practicality. With sufficient computing power, whether through large-scale language models or other models, it can indeed increase the efficiency of content production and indirectly enhance the operational efficiency of every office worker.

For commercial AI PCs, Intel has also launched the vPro® platform based on Intel® Core™ Ultra, which organically combines AI with the productivity, security, manageability, and stability of the commercial platform. Broadcom demonstrated that vPro-based AI PC intelligent management transforms traditional asset management from passive to proactive: previously, it was only possible to see whether devices were “still there” and “usable,” and operations like patch upgrades were planned; with AI-enhanced vPro, it can autonomously analyze device operation, identify potential issues, automatically match corresponding patch packages, and push suggestions to maintenance personnel. Beirui’s Sunflower has an AI intelligent remote control report solution, where remote monitoring of PCs is no longer just screen recording and capturing but can automatically and in real-time identify and generate remote work records of the computer, including marking sensitive operations such as file deletion and entering specific commands. This significantly reduces the workload of maintenance personnel in checking and tracing records.

The Future is Here: Hundreds of ISVs Realizing Actual Business Applications Henry Ford once commented on the invention of the automobile: “If you ask your customers what they need, they will say they need a faster horse.”

“A faster horse” is a consumer trap. People who think AI phones and AI PCs are just gimmicks might temporarily not see the need to upgrade their horse based on convention. More deeply, the public has some misunderstandings about the implementation of AI, which manifests in two extremes: one extreme thinks it’s something for avant-garde heavy users and flagship configurations, typically in scenarios like image and video processing; the other extreme sees it as refreshing chatbots, like an enhanced search engine, useful but not necessary. In reality, the implementation of AI PCs far exceeds the imagination of many people: for commercial customers, Intel has deeply optimized cooperation with more than 100 ISVs worldwide, and over 35 local ISVs have optimized integration at the terminal, creating a huge AI ecosystem with over 300 ISV features, bringing an unprecedented AI PC experience!

Moreover, I do not think this scale of AI application realization is pie in the sky or “fighting the future.” Because in my eyes, the display of numerous AI PC solutions is like an “OpenVINO™ party.” OpenVINO™ is a cross-platform deep learning toolkit developed by Intel, meaning “Open Visual Inference and Neural Network Optimization.” This toolkit was actually released in 2018, and over the years, it has accumulated a large number of computer vision and deep learning inference applications. By the time of the Iris Xe integrated graphics era, the software and hardware combination already had a strong reputation. For example, relying on a mature algorithm store, various AI applications can be easily built on the 11th generation Core platform, from behavior detection for smart security to automatic inventory checking in stores, with quite good results. Now, as AI PC integrated graphics evolve to Xe-LPG, with doubled computing power, the various applications accumulated by OpenVINO™ will perform even better, achieving the “location” (sustainable Xe engine) and “harmony” (ISV resources of OpenVINO™) that are already in place.

What truly ignites the AI PC is “timing,” namely, the practicalization of large language models. The breakthrough of large language models has effectively solved the problems of natural language interaction and data training, greatly lowering the threshold for ordinary users to utilize AI computing power. Earlier, I cited many examples embedded in office applications. Here, I can give another example: the combination of Kodong Intelligent Controller’s multimodal visual language model with a robotic arm. The robotic arm is a common robot application, which has long been able to perform various operations with machine vision, such as moving and sorting objects. However, traditionally, object recognition and operation require pre-training and programming. With the integration of large language models, the whole system can perform multimodal instruction recognition and execution. For instance, we can say: “Put the phone on that piece of paper.” In this scenario, we no longer need to teach the robot what a phone is, what paper is, do not need to give specific coordinates, and do not need to plan the moving path. Natural language instructions and camera images are well integrated, and execution instructions for the robotic arm are generated automatically. For such industrial scenarios, the entire process can be completed on a laptop-level computing platform, and the data does not need to leave the factory.

Therefore, what AI PC brings us is definitely not just “a faster horse,” but it subverts the way PCs are used and expands the boundaries of user capabilities. Summarizing the existing ISVs and solutions, we can categorize AI PC applications into six major scenarios:

  1. AI Chatbot: More professional Q&A for specific industries and fields.
  2. AI PC Assistant: Directly operates the PC, handling personal files, photos, videos, etc.
  3. AI Office Assistant: Office plugins to enhance office software usage efficiency.
  4. AI Local Knowledge Base: RAG (Retrieval Augmented Generation) applications, including various text and video files.
  5. AI Image and Video Processing: Generation and post-processing of multimedia information such as images, videos, and audio.
  6. AI PC Management: More intelligent and efficient device asset and security management.

Summary

It is undeniable that the development of AI always relies on the technological innovation and combination of hardware and software. AI PCs based on Core Ultra are first of all faster, stronger, lower power consumption, and longer battery life PCs. These hardware features support AI applications that bring deeper changes to our usage experience and modes. PCs empowered with “intelligent emergence” are no longer just productivity tools; in some scenarios, they can directly transform into collaborators or even operators. Behind this are performance improvements brought by microarchitecture and production process advancements, as well as the empowerment of new productivity like large language models.

If we regard CPU, GPU, and NPU as the three major computing powers of AI PCs, correspondingly, the value of AI PCs for localizing AI (on the client side) can be summarized into three major rules: economy, physics, and data confidentiality. The so-called economy means that processing data locally can reduce cloud service costs and optimize economic efficiency; physics corresponds to the “virtual” nature of cloud resources, where local AI services can provide better timeliness, higher accuracy, and avoid transmission bottlenecks between the cloud and the client; data confidentiality means that user data stays completely local, preventing misuse and leakage.

In 2023, the rapid advancement of large language models achieved the AI era in the cloud. In 2024, the client-side implementation of large language models ushered in the AI PC era. We also look forward to AI continuously solidifying applications in the intertwined development of the cloud and the client, continuously releasing powerful productivity; and we look forward to Intel jointly advancing with ISV+OEM in the future to provide us with even stronger “new productivity.”


AI PC 是噱头还是更快的马车?

AI 是虚火还是营销噱头?

2023 年以来,所有人都知道 AI 非常的热、非常的牛、非常的神,生成的文章辞藻华丽、写的报告面面俱到,毫不谦虚地说,打败 80% 甚至更多的人类。至于文生图、作曲,甚至是视频,都常有令人惊艳的作品。吹爆再吹爆,无需赘述……

对于设计师、文案策划等职业,生成式 AI 确实已经帮助他们提高了迸发创意的速度,至少不必万丈高楼平地起了。由于效率太高,这些岗位中的部分人可能反而要面对失业的烦恼。但对于普通人,AI 除了猎奇,OpenAI、SD 等时髦玩意儿好像对工作也没啥实质性的帮助——毕竟平时不需要写什么四平八稳的文章,更不需要吟诗作赋,而且见多了 AI 的输出,也实在觉得多是些正确的废话,有用,但也没啥大用。

所以,当某手机厂商说以后不生产“传统手机”的时候,大家嗤之以鼻。当 AI PC 概念出现的时候,也难免觉得是营销噱头。但是,当我在 2024 英特尔商用客户端 AI PC 产品发布会的展区走了一圈之后,我发现 AI 比我想象中的更有用。是的,有用,不需要技惊四座,但,很有用。

端侧 AI 的本地化落地带来根本性的体验变化

既然是商用 PC,那就离不开生产力工具属性。如果不买最新的硬件,玩不转最新的软件版本,很容易在鄙视链中打上“应用水平低下”的标签。就拿 Excel 为例吧,最早接触 Excel 的时候,对效率的理解是会用公式,自动进行一些计算等。再然后,是宏代码,自动执行数据的筛选、排序、导出等等,但这个难度还是比较大的。前几年呢,又似乎流行起了 Python,不去学一下那都不配谈数据处理了。在言必称数据可视化的当下,多数 Excel 用户的真实情况是尝试陌生的公式都需要临时百度一下教程,现学现用,稍复杂的操作可能要屡败屡试。

那 PC 前面加上 “AI”,或者装上某个 AI 助理,就可以赶时髦了吗?我实际体验之后,确定 AI PC 绝非如此浅薄。在 AI PC 上,有个专门做 Office 插件的公司叫 ExtendOffice,就很好地解决了 Excel 用起来磕磕绊绊的痛点:你只要说出你的意图,AI 助手马上直接在 Excel 表格上进行操作,譬如币值转换,甚至加密某一列数据。不需要去琢磨脑海里的需求到底需要对应哪个公式或者功能才可以实现,不用去查找教程,也跳过了 step by step 的学习,AI 助手当场就处理完了。

这就体现了 AI PC 一个特别关键的卖点:本地化,且在此基础上,可以嵌入工作流程,直接参与处理。我们中国人特别热爱学习,总说“授人以鱼不如授人以渔”,但“渔”的学习曲线太长了。在 AI PC 里,鱼和渔可以同时获得,因为渔夫(AI 助手)随时都在你眼前,更不要说它还可以当厨师、当秘书。

而且,刚才说的“嵌入”并不局限于某一个操作环节(类似于刚才说的给 Excel 增加某一列数据、公式),而是可以生成一个多步骤的、跨软件的操作。这也体现了大语言模型的优势:可以接受较长的输入并理解、分拆。譬如,我们完全可以对 AI PC 说:帮我将电脑静音,然后打开上次阅读的文档,并把它发送给某某邮箱。需要强调的是,以目前的演示,不需要指定准确的文档名,模糊的指示是可以理解的。还有一个让我暗暗叫好的操作是批量修改文件名。在 Windows 下批量修改文件名是需要一些小技巧的,而且,只能改成有规律的文件名(数字、字母后缀)等,但在 AI 助手的帮助下,我们可以让文件名更有个性:分别加上相关客户的名字、不同的风格类型等等。这事说起来简单,但其实需要挨个查看文件、提取关键信息,甚至根据自我理解去描述一些抽象的信息,然后挨个编写新的文件名——过程非常琐碎,文件多了就很费时间,但有了 AI 助手,这就是一句话的事。理解较长的上下文、多模态输入等等,这些都必须依赖大语言模型的能力,但其实是在本地运行的,而非借助云端的推理能力。讲真,应该没有人会认为整理文件名这种本地文件系统的操作还需要去云端绕一圈吧?从端到云之间隐藏的各种断点确实限制了我们的想象力,因此,AI PC 的这些本地操作真的打开了我的思路。

相对于大家早期较为熟悉的基于云端的 AI 工具,本地化还带来了很多显而易见的好处。譬如,断网的情况下,也是可以完成自然语言的处理和其他的操作。这对于那些曾经重度依赖大模型能力,且遭遇过服务故障的早期大模型用户而言,“天塌了”就是痛点。更不要说坐飞机之类的无网络场景了,保持连续的可用性是一个很朴素的需求。

本地部署还可以解决数据安全问题。大模型爆火之初就屡屡传出某某公司不慎泄露数据的新闻。没办法,用 ChatGPT 做简报、检查代码等等确实很香啊,但前提是得把文档上传到云端。这就导致许多企业一刀切禁止员工使用 ChatGPT。后来的事情就是许多企业选择利用开源大模型和内部数据训练、微调私有的大模型,并部署在自有的服务器或云主机上。更进一步的,现在我们看到规模 200 亿参数的大模型可以部署在基于酷睿 Ultra 处理器的 AI PC 上。

这种部署在 AI PC 上的大模型已经涉及教育、法律、医学等多个垂直领域,可以生成包括知识图谱、合同、法律意见等。譬如,将案情输入中科创达的魔方智能法务助手,就可以进行案情分析,查找相关的法律条文,撰写法律文书等。在这个场景中,很显然案情的隐私是应该绝对保证的,律师不敢将这种文档传输到云端处理。医生也有类似的约束,基于病例、基因数据等进行课题研究,如果能够在 PC 上做基因靶点、药理分析等,就不必采购服务器或者部署私有云了。

顺便一提的是,AI PC 上的大模型还让训练变得比想象中要简单,把本地你能看到的文件“喂”给 AI 助理之类的就可以了。这就解决了以往聊天机器人那种活只干了一半的“正确的废话”。譬如,通过 AI 生成一个报价邮件模板是很轻松的,但是,一般来说价格这种关键信息,机器人不懂那是很正常的事情,所以需要人工进行完善。如果找一个人类来处理这种事情,那提前做一份价格表是合理要求吧?报价表、FAQ 等都是属于需要总结提炼的工作,然后才能更有效率地培训新人——这是传统观念。本地的 AI 可以让这个事情变得很简单:让它去读 Outlook 邮箱就好了,片刻之后它自己就从历史邮件中“学”到对应的报价。相应生成的邮件就不仅是模版级了,而是要素完善的,留给我们做的就只剩确认 AI 给的结果是否正确。而且这种学习成果是可以继承下来的。

三大 AI 引擎撑起本地大模型

信息时代,我们已经经历了几次重大的科技变革。首先是个人电脑的普及,然后是互联网的普及,再就是移动互联网。现在我们正在面对的是 AI 对生产力的赋能甚至重构。我们今天讲的 AI 不是在数据中心里做训练或者推理的大规模集群,而是手边的 PC。AIGC、视频制作等面向内容创作者的应用已经不断给予大众诸多震撼了。现在我们进一步看到的是 AI PC 已经可以实实在在的提升普通白领的工作效率:处理琐碎事务,做简报、写邮件、查找法条等等,并且无缝衔接式地补齐我们的一些技能短板,类似于应用我们原本并不熟悉的的 Excel 功能、制作原以为高大上的知识图谱,诸如此类。这一切当然不仅仅依赖于大语言模型的“智能涌现”,也需要足够强大的性能以支撑本地部署。

我们多次提到的大模型的“本地部署”,都离不开端侧强劲的 AI 算力。所谓的 AI PC,依靠的是酷睿 Ultra 处理器强悍的 CPU+GPU+NPU 三大 AI 引擎,其算力足够支持 200 亿参数的大语言模型在本地运行推理过程,至于插图级的文生图为代表的 AIGC 应用相对而言倒是小菜一碟了。
 

  • CPU 快速响应:CPU 可以用来运行传统的、多样化的工作负载,并实现低延迟。酷睿 Ultra 采用先进的 Intel 4 制造工艺,可以让笔记本电脑拥有多达 16 个核心 22 个线程,睿频可高达 5.1GHz。
     
  • GPU 高吞吐量:GPU 非常适合需要并行吞吐量的大型工作负载。酷睿 Ultra 标配 Arc GPU 核显,酷睿 Ultra 7 165H 包含 8 个 Xe-LPG 核心(128 个矢量引擎),酷睿 Ultra5 125H 包含 7 个。而且,这一代核显还支持 AV1 硬编码,可以更快速地输出高质量、高压缩率的视频。凭借领先的编解码能力,Arc GPU 确实在视频剪辑行业积累的良好的口碑。随着矢量引擎能力的大幅度提升,大量内容创作 ISV 的演示了基于 AI PC 的更高效率的智能抠像、插帧等功能。
     
  • NPU 优异能效:酷睿 Ultra 处理器全新引入的 NPU(神经处理单元)能够以低功耗处理持续存在、频繁使用的 AI 工作负载,以确保高能效。譬如,火绒演示了利用 NPU 算力接管以往由 CPU 和 GPU 承担的病毒扫描等工作,虽然速度较调用 GPU 略低,但能耗有明显的优势,特别适合安全这种后台操作。我们已经很熟悉的视频会议中常用的美颜、背景更换、自动居中等操作,也可以交给 NPU 运行。NPU 也完全有能力仅凭一己之力运行轻量级的大语言模型,例如 TinyLlama 1.1,足以满足聊天机器人、智能助手、智能运维等连续性的业务需求,而将 CPU 和 GPU 的资源留给其他业务。
     

针对商用 AI PC,英特尔还推出了基于英特尔® 酷睿™ Ultra 的 vPro® 平台,将 AI 和商用平台的生产力、安全性、可管理性和稳定性有机结合。博通展示的基于 vPro 的 AI PC 智能化管理将传统的资产管理从被动变为主动:以往只能看到设备是否“还在”、“能用”,补丁升级等操作也是计划内的;而 AI 加持的 vPro 可以自主分析设备的运行,从中发现隐患并自动匹配相应的补丁包、向运维人员推送建议等。贝锐向日葵有一个AI智能远控报告方案,对 PC 的远程监控不再仅仅是录屏、截屏,而是可以自动、实时地识别和生成电脑的远程工作记录,包括标记一些敏感操作,如删除文件、输入特定的指令等。这也明显减轻了运维人员检查、回溯记录的工作量。

未来已来:数以百计的 ISV 实际业务落地

亨利福特曾经这样评价汽车的发明:“如果你问你的顾客需要什么,他们会说需要一辆更快的马车。”

“更快的马车”是一种消费陷阱,认为 AI 手机、AI PC 只是噱头的人们可能只是基于惯例认为自己暂时不需要更新马车。更深层次的,是大众对 AI 的落地有一些误解,表现为两种极端:一种极端是认为那是新潮前卫的重度用户、旗舰配置的事情,典型的场景是图像视频处理等;另一种极端是觉得是耳目一新的聊天机器人,类似于强化版的搜索引擎,有更好,无亦可。但实际上,AI PC 的落地情况远超许多人的想象:对于商用客户而言,英特尔与全球超过 100+ 个 ISV 深度优化合作,本土 35+ISV 在终端优化融合,创建包含 300 多项 ISV 特性的庞大 AI 生态系统,带来规模空前的 AI PC 体验!

而且,我并不认为这个数量级的 AI 应用落地是画饼或者“战未来”。因为在我眼里,诸多 AI PC 解决方案的展示,宛如 “OpenVINO™ 联欢会”。OpenVINO™ 是英特尔开发的跨平台深度学习工具包,意即“开放式视觉推理和神经网络优化”。这个工具包其实在 2018 年就已经发布,数年来已经积累了大量计算视觉和深度学习推理应用,发展到 Iris Xe 核显时期,软件、硬件的配合就已经很有江湖地位了。譬如依托成熟的算法商店,基于 11 代酷睿平台可以很轻松的构建各式各样的 AI 应用,从智慧安防的行为检测,到店铺自动盘点,效果相当的好。现在,AI PC 的核显进化到 Xe-LPG,算力倍增,OpenVENO™ 积累的各式应用本身就会有更好的表现,可以说“地利”(具有延续性的 Xe 引擎)和“人和”(OpenVINO™ 的 ISV 资源)早就是现成的。

真正引爆 AI PC 的是“天时”,也就是大语言模型步入实用化。大语言模型的突破很好地解决了自然语言交互和数据训练的问题,极大地降低了普通用户利用 AI 算力的门槛。前面我举了很多嵌入办公应用的例子,在这里,我可以再举一个例子:科东智能控制器的多模态视觉语言模型与机械臂的结合。机械臂是司空见惯的机器人应用,早就可以结合机器视觉做各种操作,移动、分拣物品等等。但物品的识别和操作,传统上是是需要预训练和编程的。结合大语言模型后,整套系统就可以做多模态的指令识别与执行了,譬如我们可以说:把手机放到那张纸上面。在这个场景中,我们不再需要教会机器人手机是什么、纸是什么,不需要给具体的坐标,不需要规划移动的路径。自然语言的指令,摄像头的图像,这些多模态的输入被很好地融合,并自行生成了执行指令给机械臂。对于这样的工业场景,整套流程可以在一台笔记本电脑等级的算力平台上完成,数据不需要出厂。

所以,AI PC 给我们带来的,绝对不仅仅是“更快的马车”,而是颠覆了 PC 的使用模式,拓展了用户的能力边界。盘点已有的 ISV 与解决方案,我们可以将 AI PC 的应用总结为六大场景:
 

  • Al Chatbot:针对特定行业和领域更加专业的问答。
     
  • AI PC 助理:直接对 PC 操作,处理个人文件、照片、视频等。
     
  • Al Office 助手:Office 插件,提升办公软件使用效率。
     
  • AI 本地知识库:RAG(Retrieval Augmented Generation,检索增强生成)应用,包括各类文本和视频文件。
     
  • AI 图像视频处理:图像、视频、音频等多媒体信息的生成与后期处理。
     
  • AI PC 管理:更加智能高效的设备资产及安全管理。

小结

不可否认,AI 的发展永远离不开硬件与软件的技术创新、相互结合,基于酷睿 Ultra 的 AI PC 首先是更快、更强、更低功耗、更长待机的 PC,这些硬件特性支撑的 AI 应用对我们的使用体验、使用模式带来了更深刻的改变。获得“智能涌现”加持的 PC 不再仅仅是生产力工具,在某些场景中,它直接可以化身协作者甚至操作者。这背后既有微架构和生产工艺提升带来的性能改进,也有大语言模型等新质生产力的赋能。

如果我们将 CPU、GPU、NPU 视作是 AI PC 的三大算力,相应的,也可以将 AI PC 让 AI 本地化(端侧)落地的价值归纳为三大法则:经济、物理、数据保密。所谓经济,是数据在本地处理可降低云服务成本,优化经济性;物理则对应云资源的“虚”,本地 AI 服务可以提供更好的及时性,更高的准确性,避免了云与端之间的传输瓶颈;数据保密,是指用户数据完全留在本地,防止滥用和泄露。

在 2023 年,大语言模型的狂飙成就了云端的 AI 元年。2024 年,大语言模型的端侧落地开启了 AI PC 元年。我们也期待 AI 在云与端的交织发展当中不断夯实应用,源源不绝地释放强大生产力;更期待英特尔未来联合 ISV+OEM 共同发力,为我们提供更加强劲的“新质生产力”。

AI Revolutionizes Industry and Retail: From Production Lines to Personalized Shopping Experiences

  1. Industry and Retail Relationship
  2. AI in Industry
  3. AI in Retail
  4. Summary

AI technology is increasingly being utilized in industry and retail sectors to enhance efficiency, productivity, and customer experiences. In this post, we firstly revisit the relationship between the industry and retail sections, then provide some common AI technologies and applications used in these domains.

Industry and Retail Relationship

The key difference between industry and retail lies in their primary functions and the nature of their operations:

Industry:

  • Industry, often referred to as manufacturing or production, involves the creation, extraction, or processing of raw materials and the transformation of these materials into finished goods or products.
  • Industrial businesses are typically involved in activities like manufacturing, mining, construction, or agriculture.
  • The primary focus of the industry is to produce goods on a large scale, which are then sold to other businesses, wholesalers, or retailers. These goods are often used as inputs for other industries or for further processing.
  • Industries may have complex production processes, rely on machinery and technology, and require substantial capital investment.

Retail:

  • Retail, on the other hand, involves the sale of finished products or goods directly to the end consumers for personal use. Retailers act as intermediaries between manufacturers or wholesalers and the end customers.
  • Retailers can take various forms, including physical stores, e-commerce websites, supermarkets, boutiques, and more.
  • Retailers may carry a wide range of products, including those manufactured by various industries. They focus on providing a convenient and accessible point of purchase for consumers.
  • Retail operations are primarily concerned with merchandising, marketing, customer service, inventory management, and creating a satisfying shopping experience for consumers.

AI in Industry

AI, or artificial intelligence, is revolutionizing industry sectors by powering various applications and technologies that enhance efficiency, productivity, and customer experiences. Here are some common AI technologies and applications used in these domains:

1. Robotics and Automation: AI-driven robots and automation systems are used in manufacturing to perform repetitive, high-precision tasks, such as assembly, welding, and quality control. Machine learning algorithms enable these robots to adapt and improve their performance over time.

2. Predictive Maintenance: AI is used to predict when industrial equipment, such as machinery or vehicles, is likely to fail. This allows companies to schedule maintenance proactively, reducing downtime and maintenance costs.

3. Quality Control: Computer vision and machine learning algorithms are employed for quality control processes. They can quickly identify defects or irregularities in products, reducing the number of faulty items reaching the market.

4. Supply Chain Optimization: AI helps in optimizing the supply chain by predicting demand, managing inventory, and optimizing routes for logistics and transportation.

5. Process Optimization: AI can optimize manufacturing processes by adjusting parameters in real time to increase efficiency and reduce energy consumption.

6. Safety and Compliance: AI-driven systems can monitor and enhance workplace safety, ensuring that industrial facilities comply with regulations and safety standards.


AI in Retail

AI technology is revolutionizing the retail sector too, introducing innovative solutions and transforming the way businesses engage with customers. Here are some key AI technologies and applications used in retail:

1. Personalized Marketing: AI is used to analyze customer data and behaviours to provide personalized product recommendations, targeted marketing campaigns, and customized shopping experiences.

2. Chatbots and Virtual Assistants: Retailers employ AI-powered chatbots and virtual assistants to provide customer support, answer queries, and assist with online shopping.

3. Inventory Management: AI can optimize inventory levels and replenishment by analyzing sales data and demand patterns, reducing stockouts and overstock situations.

4. Price Optimization: Retailers use AI to dynamically adjust prices based on various factors, such as demand, competition, and customer behaviour, to maximize revenue and profits.

5. Visual Search and Image Recognition: AI enables visual search in e-commerce, allowing customers to find products by uploading images or using images they find online.

6. Supply Chain and Logistics: AI helps optimize supply chain operations, route planning, and warehouse management, improving efficiency and reducing costs.

7. In-Store Analytics: AI-powered systems can analyze in-store customer behaviour, enabling retailers to improve store layouts, planogram designs, and customer engagement strategies.

8. Fraud Detection: AI is used to detect and prevent fraudulent activities, such as credit card fraud and return fraud, to protect both retailers and customers.

Summary

AI’s potential to transform industry and retail is huge and its future applications are very promising. As AI technologies advance, we can expect increased levels of automation, personalization, and optimization in industry and retail operations.

AI technologies in these sectors often rely on machine learning (ML), deep learning (DL), natural language processing (NLP), and computer vision (CV), and now Generative Large Language Models (LLM) to analyze and gain insights from data. These AI applications are continuously evolving and are changing the way businesses in these sectors operate, leading to improved processes and customer experiences.

AI will drive high levels of efficiency, innovation, and customer satisfaction in these sectors, ultimately revolutionizing the way businesses operate and interact with consumers.


The Future of Coding: Will Generative AI Make Programmers Obsolete?

Table of Content

  1. Is coding still worth learning in 2024?
  2. Is AI replacing software engineers?
  3. Impact of AI on software engineering
  4. The problem with AI-generated code
  5. How AI can help software engineers
  6. Does AI really make you code faster?
  7. Can one AI-powered engineer do the work of many?
  8. Future of Software Engineering
  9. Reference
Credits: this post is a notebook of the key points from YouTube Content Creator Programming with Mosh's video with some editorial works. TL,DR,: watch the video.

Is coding still worth learning in 2024?

This can be a common question for a lot of people especially the younger generation of students when they try to choose a career path with some kind of insurance for future incomings.

People are worried that AI is going to replace software engineers, or any engineer related to coding and designs.

As you know, we should trust solid data instead of media and hearsay in the digital area. Social media have been creating this anxious feeling that every job is going to collapse because of AI. Coding has no future.

But I’ve got a different take backed up by real-world numbers as follows.

Note: In this post, “software engineer” represents all groups of coders (data engineer, data analyst, data scientist, machine learning engineer, frontend/backend/full-stack developers, programmers and researchers).

Is AI replacing software engineers?

The short answer is NO.

But there is a lot of fear about AI replacing coders. Headling scream robots taking over jobs and it can be overwhelming. But the truth is:

AI is not going to take you jobs; instead it is the People who can work with AI will have the advantage, and probabley will take your job.

Software engineering is not going away at least not anytime soon in our generation. Here are some data to back this up.

The US Bureau of Labor and Statistics (BLS) is a government agency that tracks job growth across the country on its website. From the data, we see that there is a continued demand for software developers, and computer and information scientists.

They claimed that the requirement for software developers is expected to grow by 26% from 2022 to 2032, while the average across all occupations is only 3%. This is a strong indication that software engineering is here to stay.

Source: https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm#tab-6

In our lives, the research and development conducted by computer and information research scientists turn ideas into technology. As demand for new and better technology grows, demand for computer and information research scientists will grow as well.

There is a similar trend for Computer and Information Research Scientists, which is expected to grow by 23% from 2022 to 2032.

source: https://www.bls.gov/ooh/computer-and-information-technology/computer-and-information-research-scientists.htm#tab-6

Impact of AI on software engineering

To better understand the impact of AI on software engineering, let’s do a quick revisit of the history of programming.

In the early days of programming, engineers wrote codes in a way that only the computer understood. Then, we create compilers, we can program in a human-readable language like C++ and Jave without worrying about how the code should eventually get converted into zeros and ones, and where it will get stored in the memory.

Here is the fact

Compilers did not replace programmers. They made them more efficient!

Since then we have built so many software applications and totally changed the world.

The problem with AI-generated code

AI will likely do the same as changing the future, we will be able to delegate routine and repetitive coding tasks to AI, so we can focus on complex problem-solving, design and innovation.

This will allow us to build more sophisticated software applications most people can not even imagine today. But even then, just because AI can generate code doesn’t mean we can or we should delegate the entire coding aspect of software development to AI because

AI-Generated Code is Lower-Quality, we still need to review and refine it before using it in the production.

In fact, there is a study to support this: Coding on Copilot: 2023 Data Suggests Downward Pressure on Code Quality. According to this study, they collected 153M lines of code from 2020 to 2023 and found disconcerting trends for maintainability: Code churn will be doubled in 2024.

source: Abstract of the 2023 Data Shows Downward Pressure on
Code Quality

So, yes, we can produce more code with AI. but

More Code != Better Code

Humans should always review and refine AI-generated code for quality and security before deploying it to production. That means all the coding skills that software engineer currently has will continue to stay relevant in the future.

You still need the knowledge of data structure and algorithms programming languages and their tricky parts, tools and frameworks, you still need to have all that knowledge to review and refine the AI-generated code, you will just spend less time typing it into the computer.

So anyone telling you that you can use natural language to build software without understanding anything about coding is out of touch with the reality of software engineering (or he is trying to sell you something, i.e., GPUs).

source: NVIDIA CEO: No Need To Learn Coding, Anybody Can Be A Programmer With Technology

How AI can help software engineers

Of course, you can make a dummy app with AI in minutes, but this is not the same kind of software that runs our banks, transportation, healthcare, security and more. These are the software/systems that really matter, and our life depends on them. We can’t let a code monkey talk to a chatbot in English and get that software built. At least, this will not happen in our lifetime.

In the future, we will probably spend more time designing new features and products with AI instead of writing boilerplate code. We will likely delegate aspects of coding to AI, but this doesn’t mean we don’t need to learn to code.

As a software engineer or any coding practitioner, you will always need to review what AI generates and refine it either by hand or by guiding the AI to improve the code.

Keep in mind that Coding is only one small part of a software engineer’s job, we often spend most of our time talking to people, understanding requirements, writing stories, discussing software/system architecture, etc.

Instead of being worried about AI, I’m more concerned about Human Intelligence!

Does AI really make you code faster?

AI can only boost our programming productivity but not necessarily the overall productivity.

In fact, McKinsey’s report, Unleashing Developer Productivity with Generative AI, found that for highly complex tasks developers saw less than 10% improvement in their speed with generative AI supports.

source: https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai

As you can see, AI helped the most with documentation and code generation to some extent, but when moving to code refactoring, the improvement dropped to 20% and for high-complexity tasks, it was less than 10%.

 Time savings shrank to less than 10 percent on tasks that developers deemed high in complexity due to, for example, their lack of familiarity with a necessary programming framework.

Thus, if anyone tells you that software engineers will be obsolete in 5 years, they are either ignorant or trying to sell you something.

In fact, some studies tell that the role of software engineers (coders) may become more valuable as they will be needed to develop, manage and maintain these AI systems.

They (software engineers) need to understand all the complexity of building software and use AI to boost their productivity.

Can one AI-powered engineer do the work of many?

Now, people are worried that one Senior Engineer can simply use AI to replace many Engineers, eventually, leaving no job opportunities for juniors.

But again this is a fallacy because the time saving you get from AI is not as great as you are promised in reality. Anyone who uses AI to generate code knows that. It takes effort to get the right prompts for usable results, and the code still needs polishing.

Thus, it is not like one engineer will suddenly have so much free time to do the job of many people.

But you may ask, this is now, what about the future? Maybe in a year or two, AI will start to build software like a human.

In theory, yes, AI is advancing and one day it may even reach and surpass human intelligence. But Einstein said:

In Theory, Theory and Practice are the Same.

In Practice, they are NOT.

The reality is that while machines may be able to handle repetitive and routine tasks, human creativity and expertise will still be necessary for developing complex solutions and strategies.

Software engineering will be extremely important over the next several decades. I don’t think it is going away in the future, but I do believe it will change.

Future of Software Engineering

Software powers our world and that will not change anytime soon.

In future, we have to learn how to input the right prompt into our AI tools to get the expected result. This is not an easy skill to develop, it requires problem-solving capability as well as programming knowledge of languages and tools. So, if you’ve already made up your mind and don’t want to invest your time in software engineering or coding. That’s perfectly fine. Follow your passion!

The coding tools will evolve as they always do, but the true coding skill lies in learning and adapting. The future engineer needs today’s coding skills and a good understanding to use AI effectively. The future brings more complexity and demands more knowledge and adaptability from software engineers.

If you like building things with code, and if the idea of shaping the future with technology gets you excited, don’t let negativity and fear of Gen-AIs hold you back.

Reference

Prompt Engineering for LLM

2024-Feb-04: 1st Version

  1. Introduction
  2. Basic Prompting
    1. Zero-shot
    2. Few-shot
    3. Hallucination
  3. Perfect Prompt Formula for ChatBots
  4. RAG, CoT, ReACT, SASE, DSP …
    1. RAG: Retrieval-Augmented Generation
    2. CoT: Chain-of-Thought
    3. Self-Ask + Search Engine
    4. ReAct: Reasoning and Acting
    5. DSP: Directional Stimulus Prompting
  5. Summary and Conclusion
  6. Reference
Prompt engineering is like adjusting audio without opening the equipment.

Introduction

Prompt Engineering, also known as In-Context Prompting, refers to methods for communicating with a Large Language Model (LLM) like GPT (Generative Pre-trained Transformer) to manipulate/steer its behaviour for expected outcomes without updating, retraining or fine-tuning the model weights. 

Researchers, developers, or users may engage in prompt engineering to instruct a model for specific tasks, improve the model’s performance, or adapt it to better understand and respond to particular inputs. It is an empirical science and the effect of prompt engineering methods can vary a lot among models, thus requiring heavy experimentation and heuristics.

This post only focuses on prompt engineering for autoregressive language models, so nothing with image generation or multimodality models.

Basic Prompting

Zero-shot and few-shot learning are the two most basic approaches for prompting the model, pioneered by many LLM papers and commonly used for benchmarking LLM performance. That is to say, Zero-shot and few-shot testing are scenarios used to evaluate the performance of large language models (LLMs) in handling tasks with little or no training data. Here are examples for both:

Zero-shot

Zero-shot learning simply feeds the task text to the model and asks for results.

Scenario: Text Completion (Please try the following input in ChatGPT or Google Bard)

Input:

Task: Complete the following sentence:

Input: The capital of France is ____________.

Output (ChatGPT / Bard):

Output: The capital of France is Paris.

Few-shot

Few-shot learning presents a set of high-quality demonstrations, each consisting of both input and desired output, on the target task. As the model first sees good examples, it can better understand human intention and criteria for what kinds of answers are wanted. Therefore, few-shot learning often leads to better performance than zero-shot. However, it comes at the cost of more token consumption and may hit the context length limit when the input and output text are long.

Scenario: Text Classification

Input:

Task: Classify movie reviews as positive or negative.

Examples:
Review 1: This movie was amazing! The acting was superb.
Sentiment: Positive
Review 2: I couldn't stand this film. The plot was confusing.
Sentiment: Negative

Question:
Review: I'll bet the video game is a lot more fun than the film.
Sentiment:____

Output

Sentiment: Negative

Many studies have explored the construction of in-context examples to maximize performance. They observed that the choice of prompt format, training examples, and the order of the examples can significantly impact performance, ranging from near-random guesses to near-state-of-the-art performance.

Hallucination

In the context of Large Language Models (LLMs), hallucination refers to a situation where the model generates outputs that are incorrect or not grounded in reality. A hallucination occurs when the model produces information that seems plausible or coherent but is actually not accurate or supported by the input data.

For example, in a language generation task, if a model is asked to provide information about a topic and it generates details that are not factually correct or have no basis in the training data, it can be considered as hallucination. This phenomenon is a concern in natural language processing because it can lead to the generation of misleading or false information.

Addressing hallucination in LLMs is a challenging task, and researchers are actively working on developing methods to improve the models’ accuracy and reliability. Techniques such as fine-tuning, prompt engineering, and designing more specific evaluation metrics are among the approaches used to mitigate hallucination in language models.

Perfect Prompt Formula for ChatBots

For personal daily documenting work such as text generation, there are six key components making up the perfect formula for ChatGPT and Google Bard:

Task, Context, Exemplars, Persona, Format, and Tone.

Prompt Formula for ChatBots
  1. The Task sentence needs to articulate the end goal and start with an action verb.
  2. Use three guiding questions to help structure relevant and sufficient Context.
  3. Exemplars can drastically improve the quality of the output by giving specific examples for the AI to reference.
  4. For Persona, think of who you would ideally want the AI to be in the given task situation.
  5. Visualizing your desired end result will let you know what format to use in your prompt.
  6. And you can actually use ChatGPT to generate a list of Tone keywords for you to use!
Example from Jeff Su: Master the Perfect ChatGPT Prompt Formula 

RAG, CoT, ReACT, SASE, DSP …

If you are ever curious about what the heck are those techies talking about with the above words? Please continues …

OK, so here’s the deal. We’re diving into the world of academia, talking about machine learning and large language models in the computer science and engineering domains. I’ll try to explain it in a simple way, but you can always dig deeper into these topics elsewhere.

RAG: Retrieval-Augmented Generation

RAG (Retrieval-Augmented Generation): RAG typically refers to a model that combines both retrieval and generation approaches. It might use a retrieval mechanism to retrieve relevant information from a database or knowledge base and then generate a response based on that retrieved information. In real applications, the users’ input and the model’s output will be pre/post-processed to follow certain rules and obey laws and regulations.

RAG: Retrieval-Augmented Generation

Here is a simplified example of using a Retrieval-Augmented Generation (RAG) model for a question-answering task. In this example, we’ll use a system that retrieves relevant passages from a knowledge base and generates an answer based on that retrieved information.

Input:

User Query: What are the symptoms of COVID-19?

Knowledge Base:

1. Title: Symptoms of COVID-19
Content: COVID-19 symptoms include fever, cough, shortness of breath, fatigue, body aches, loss of taste or smell, sore throat, etc.

2. Title: Prevention measures for COVID-19
Content: To prevent the spread of COVID-19, it's important to wash hands regularly, wear masks, practice social distancing, and get vaccinated.

3. Title: COVID-19 Treatment
Content: COVID-19 treatment involves rest, hydration, and in severe cases, hospitalization may be required.

RAG Model Output:

Generated Answer: 

The symptoms of COVID-19 include fever, cough, shortness of breath, fatigue, body aches, etc.

Remark: ChatGPT 3.5 will give basic results like the above. But, Google Bard will provide extra resources like CDC links and other sources it gets from the Search Engines. We could guess Google used a different framework to OpenAI.

CoT: Chain-of-Thought

Chain-of-thought (CoT) prompting (Wei et al. 2022) generates a sequence of short sentences to describe reasoning logics step by step, known as reasoning chains or rationales, to eventually lead to the final answer.

The benefit of CoT is more pronounced for complicated reasoning tasks while using large models (e.g. with more than 50B parameters). Simple tasks only benefit slightly from CoT prompting.

Tree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, essentially creating a tree structure. The search process can be BFS or DFS while each state is evaluated by a classifier (via a prompt) or majority vote.

CoT : Chain-of-Thought and ToT: Tree-of-Thought

Self-Ask + Search Engine

Self-Ask (Press et al. 2022) is a method to repeatedly prompt the model to ask follow-up questions to construct the thought process iteratively. Follow-up questions can be answered by search engine results.

Self-Ask+Search Engine Example

ReAct: Reasoning and Acting

ReAct (Reason + Act; Yao et al. 2023) combines iterative CoT prompting with queries to Wikipedia APIs to search for relevant entities and content and then add it back into the context.

In each trajectory consists of multiple thought-action-observation steps (i.e. dense thought), where free-form thoughts are used for various purposes.

Example of ReAct from pp18.(Reason + Act; Yao et al. 2023)
ReAct: Reasoning and Acting

Specifically, from the paper, the authors use a combination of thoughts that decompose questions (“I need to search x, find y, then find z”), extract information from Wikipedia observations (“x was started in 1844”, “The paragraph does not tell x”), perform commonsense (“x is not y, so z must instead be…”) or arithmetic reasoning (“1844 < 1989”), guide search reformulation (“maybe I can search/lookup x instead”), and synthesize the final answer (“…so the answer is x”).

DSP: Directional Stimulus Prompting

Directional Stimulus Prompting (DSP, Z. Li 2023), is a novel framework for guiding black-box large language models (LLMs) toward specific desired outputs.  Instead of directly adjusting LLMs, this method employs a small tunable policy model to generate an auxiliary directional stimulus (hints) prompt for each input instance. 

DSP: Directional Stimulus Prompting

Summary and Conclusion

Prompt engineering involves carefully crafting these prompts to achieve desired results. It can include experimenting with different phrasings, structures, and strategies to elicit the desired information or responses from the model. This process is crucial because the performance of language models can be sensitive to how prompts are formulated.

I believe a lot of researchers will agree with me. Some prompt engineering papers don’t need to be 8 pages long. They could explain the important points in just a few lines and use the rest for benchmarking. 

As researchers and developers delve further into the realms of prompt engineering, they continue to push the boundaries of what these sophisticated models can achieve.

To achieve this, it’s important to create a user-friendly LLM benchmarking system that many people will use. Developing better methods for creating prompts will help advance language models and improve how we use LLMs. These efforts will have a big impact on natural language processing and related fields.

Reference

  1. Weng, Lilian. (Mar 2023). Prompt Engineering. Lil’Log.
  2. IBM (Jan 2024) 4 Methods of Prompt Engineering
  3. Jeff Su (Aug 2023) Master the Perfect ChatGPT Prompt Formula

Technical Review 03: Scale Effects & What happens when LLMs get bigger and bigger

  1. AI Assitant Summary
  2. Introduction
  3. Part One: pre-training phase
    1. Open AI
    2. Deep Mind
  4. Part Two: downstream tasks
    1. Linearity Tasks
    2. Breakthroughs Tasks
    3. U-shaped Tasks
  5. Personal View
  6. Reference
  7. What’s Next?

AI Assitant Summary

This blog discusses the scale of Large Language Models (LLMs) and their impact on performance. LLMs like GPT, LaMDA, and PaLM have billions of parameters, raising questions about the consequences of their continued growth.

The journey of an LLM involves two stages: pre-training and scenario application. Pre-training focuses on optimizing the model using cross-entropy, while scenario application evaluates the model’s performance in specific use cases. Evaluating an LLM’s quality requires considering both stages, rather than relying solely on pre-training indicators.

Increasing training data, model parameters, and training time has been found to enhance performance in the pre-training stage. OpenAI and DeepMind have explored this issue, with OpenAI finding that a combination of more data and parameters, along with fewer training steps, produces the best results. DeepMind considers the amount of training data and model parameters equally important.

The influence of model size on downstream tasks varies. Linear tasks show consistent improvement as the model scales, while breakthrough tasks only benefit from larger models once they reach a critical scale. Tasks involving logical reasoning demonstrate sudden improvement at specific model scales. Some tasks exhibit U-shaped growth, where performance initially declines but then improves with larger models.

Reducing the LLM’s parameters while increasing training data proportionally can decrease the model’s size without sacrificing performance, leading to faster inference speed.

Understanding the impact of model size on both pre-training and downstream tasks is vital for optimizing LLM performance and exploring the potential of these language models.

Introduction

In recent years, we’ve witnessed a surge in the size of Large Language Models (LLMs), with models now boasting over 100 billion parameters becoming the new standard. Think OpenAI’s GPT-3 (175B), Google’s LaMDA (137B), PaLM (540B), and other global heavyweights. China, too, contributes to this landscape with models like Zhiyuan GLM, Huawei’s “Pangu,” Baidu’s “Wenxin,” etc. But here’s the big question: What unfolds as these LLMs continue to grow?

The journey of pre-trained models involves two crucial stages: pre-training and scenario application.

In the pre-training stage, the optimization goal is cross entropy. For autoregressive language models such as GPT, it is to see whether LLM correctly predicts the next word;

However, the real test comes in the scenario application stage, where specific use cases dictate evaluation criteria. Generally, our intuition is that if the LLM has better indicators in the pre-training stage, its ability to solve downstream tasks will naturally be stronger. However, this is not entirely true.

Existing research has proven that the optimization index in the pre-training stage does show a positive correlation with downstream tasks, but it is not completely positive. In other words, it is not enough to only look at the indicators in the pre-training stage to judge whether an LLM model is good enough. Based on this, we will look separately at these two different stages to see what the impact will be as the LLM model increases.

Part One: pre-training phase

First, let’s look at what happens as the model size gradually increases during the pre-training stage. OpenAI specifically studied this issue in “Scaling Laws for Neural Language Models” and proposed the “scaling law” followed by the LLM model.

Source: Scaling Laws for Neural Language Models

As shown in the figure above, this study proves that when we independently increase (1) the amount of training data, (2) model parameter size and (3) extend the model training time (such as from 1 Epoch to 2 Epochs), the Loss of the pre-trained model on the test set will decrease monotonically. In other words, the model’s effectiveness is improving steadily.

Since all three factors are important when we actually do pre-training, we have a decision-making problem on how to allocate computing power:

Question: Assuming that the total computing power budget used to train LLM (such as fixed GPU hours or GPU days) is given. How to allocate computing power?

Should we increase the amount of data and reduce model parameters?

Or should we increase the amount of data and model size at the same time but reduce the number of training steps?

Open AI

As one zero-sum game, the scale of one-factor increases, and the scale of other factors must be reduced to keep the total computing power unchanged, so there are various possible computing power allocation plans.

In the end, OpenAI chose to increase the amount of training data and model parameters at the same time but used an early stopping strategy to reduce the number of training steps. Because it proves that: for the two elements of training data volume and model parameters, if you only increase one of them separately, this is not the best choice. It is better to increase both at the same time according to a certain proportion. Its conclusion is to give priority to increasing the model parameters, and then the amount of training data.

Assuming that the total computing power budget used to train LLM increases by 10 times, then the amount of model parameters should be increased by 5.5 times and the amount of training data should be increased by 1.8 times. At this time, the model gets the best performance.

Deep Mind

A study by DeepMind (Reference: Training Compute-Optimal Large Language Models) explored this issue in more depth.

Source: Training Compute-Optimal Large Language Models

Its basic conclusions are similar to those of OpenAI. For example, it is indeed necessary to increase the amount of training data and model parameters at the same time, so that the model effect will be better.

Many large models do not consider this when doing pre-training. Many large LLM models were trained just monotonically increasing the model parameters while fixing the amount of training data. This approach is wrong and limits the potential of the LLM model.

However, DeepMind corrects the proportional relationship between the two by OpenAI and believes that the amount of training data and model parameters are equally important.

In other words, assuming that the total computing power budget used to train LLM increases by 10 times, the number of model parameters should be increased by 3.3 times, and the amount of training data should also be increased by 3.3 times to get the best model.

This means that increasing the amount of training data is more important than we previously thought. Based on this understanding, DeepMind chose another configuration in terms of computing power allocation when designing the Chinchilla model: compared with the Gopher model with a data volume of 300B and a model parameter volume of 280B, Chinchilla chose to increase the training data by 4 times, but reduced the model The parameters are reduced to one-fourth that of Gopher, which is about 70B. However, regardless of pre-training indicators or many downstream task indicators, Chinchilla is better than the larger Gopher.

This brings us to the following enlightenment:

We can choose to enlarge the training data and reduce the LLM model parameters in the same proportion to achieve the purpose of greatly reducing the size of the model without reducing the model performance.

Reducing the size of the model has many benefits, such as the inference speed will be much faster when applied. This is undoubtedly a promising development route for LLM.

Part Two: downstream tasks

The above is the impact of the model scale from the pre-training stage. From the perspective of the effect of LLM on solving specific downstream tasks, as the model scale increases, different types of tasks have different performances.

Source: Beyond the Imitation Game Benchmark

Specifically, there are the following three types of tasks.

  • (a) Tasks that achieve the highest linearity scores see model performance improve predictably with scale and typically rely on knowledge and simple textual manipulations.
  • (b) Tasks with high breakthroughs do not see model performance improve until the model reaches a critical scale. These tasks generally require sequential steps or logical reasoning. Around 5% of BIG-bench tasks see models achieve sudden score breakthroughs with increasing scale.
  • (c) Tasks that achieve the lowest (negative) linearity scores see model performance degrade with scale.

Linearity Tasks

The first type of task perfectly reflects the scaling law of the LLM model, which means that as the model scale gradually increases, the performance of the tasks gets better and better, as shown in (a) above.

Such tasks usually have the following common characteristics: they are often knowledge-intensive tasks. That is to say, if the LLM model contains more knowledge, the performance of such tasks will be better.

Many studies have proven that the larger the LLM model, the higher the learning efficiency. For the same amount of training data, the larger the model, the better the performance. This shows that even when faced with the same batch of training data, a larger LLM model is relatively more efficient in getting more knowledge than small ones.

What’s more, under normal circumstances, when increasing the LLM model parameters, the amount of training data will often increase simultaneously, which means that large models can learn more knowledge points from more data. These studies can explain the above figure, why as the model size increases, these knowledge-intensive tasks become better and better.

Most traditional NLP tasks are actually knowledge-intensive tasks, and many tasks have achieved great improvement in the past few years, even surpassing human performance. Obviously, this is most likely caused by the increase in the scale of the LLM model, rather than due to a specific technical improvement.

Breakthroughs Tasks

The second type of task demonstrates that LLM has some kind of “Emergent Ability”, as shown in (b) above. The so-called “emergent ability” means that when the model parameter scale fails to reach a certain threshold, the model basically does not have any ability to solve such tasks, which reflects that its performance is equivalent to randomly selecting answers. However, when the model scale spans Once the threshold is exceeded, the LLM model’s effect on such tasks will experience a sudden performance increase.

In other words, model size is the key to unlocking (unlocking) new capabilities of LLM. As the model size becomes larger and larger, more and more new capabilities of LLM will be gradually unlocked.

This is a very magical phenomenon because it means the following possibilities that make people optimistic about the future. Many tasks that cannot be solved well by LLM at present can be solved in future if we continue to make the model larger. Because LLM has “emergent capabilities” to suddenly unlock those limits one day. The growth of the LLM model will bring us unexpected and wonderful gifts.

The article “Beyond the Imitation Game: Quantifying and Extrapolating the Capabilities of Language Models” points out that tasks that embody “emergent capabilities” also have some common features: these tasks generally consist of multiple steps, and to solve these tasks, it is often necessary to first Multiple intermediate steps are solved, and logical reasoning skills play an important role in the final solution of such tasks.

Chain of Thought (CoT) Prompting is a typical technology that enhances the reasoning ability of LLM, which can greatly improve the effect of such tasks. I will discuss the CoT technology in the following blogs.

Here the most important question is, why does LLM have this “emergent ability” phenomenon? The article “Emergent Abilities of Large Language Models” shares several possible explanations:

Source: Emergent Abilities of Large Language Models

One possible explanation is that the evaluation indicators of some tasks are not smooth enough. For example, some metrics for generation tasks require that the string output by the model must completely match the standard answer to be considered correct otherwise it will be scored zero.

Thus, even as the model gradually becomes better and outputs more correct character fragments, because it is not completely correct, 0 points will be given for any small errors. Only when the model is large enough, the output Scores are scored when all the output segments are correct. In other words, because the indicator is not smooth enough, it cannot reflect the reality that LLM is actually gradually improving its performance on the task. It seems to be an external manifestation of “emergent ability”.

Another possible explanation is that some tasks are composed of several intermediate steps. As the size of the model increases, the ability to solve each step gradually increases, but as long as one intermediate step is wrong, the final answer will be wrong. This will also lead to this superficial “emergent ability” phenomenon.

Of course, the above explanations are still conjectures at present. As for why LLM has this phenomenon, further and in-depth research is needed.

U-shaped Tasks

Source: Inverse scaling can become U-shaped

There are also a small number of tasks. As the model size increases, the task effect curve shows U-shaped characteristics: as the model size gradually increases, the task effect gradually becomes worse, but when the model size further increases, the effect starts to get better and better. Figure above shows a U-shaped growth trend where the indicator trend of the pink PaLM model on the two tasks.

Why do these tasks appear so special? The article “Inverse Scaling Can Become U-shaped” gives an explanation:

These tasks actually contain two different types of subtasks, one is the real task, and the other is the “interference task ( distractor task)”.

  • When the model size is small, it cannot identify any sub-task, so the performance of the model is similar to randomly selecting answers.
  • When the model grows to a medium size, it mainly tries to solve the interference task, so it has a negative impact on the real task performance. This is reflected in the decline of the real task effect.
  • When the model size is further increased, LLM can ignore the interfering task and perform the real task, which is reflected in the effect starting to grow.

For those tasks whose performance has been declining as the model size increases, if Chain of Thought (CoT) Prompting is used, the performance of some tasks will be converted to follow the Scaling Law. That is, the larger the model size, the better the performance, while other tasks will be converted to a U-shaped growth curve.

This actually shows that this type of task should be a reasoning-type task, so the task performance will change qualitatively after adding CoT.

Personal View

Increasing the size of the LLM model may not seem technically significant, but it is actually very important to build better LLMs. In my opinion, the advancements from Bert to GPT 3 and ChatGPT are likely attributed to the growth of the LLM model size rather than a specific technology. I believe a lot of people want to explore the scale ceiling of the LLM model if possible.

The key to achieving AGI may lie in having large and diverse data, large-scale models, and rigorous training processes. Developing such large LLM models requires high engineering skills from the technical team, which means there is technical content involved.

Increasing the scale of the LLM model has research significance. There are two main reasons why it is valuable.

  • Firstly, as the model size grows, the performance of various tasks improves, especially for knowledge-intensive tasks. Additionally, for reasoning and difficult tasks, the effect of adding CoT Prompting follows a scaling law. Therefore, it is important to determine to what extent the scale effect of LLM can solve these tasks.
  • Secondly, the “emergent ability” of LLM suggests that increasing the model size may unlock new capabilities that we did not expect. This raises the question of what these capabilities could be.

Considering these factors, it is necessary to continue increasing the model size to explore the limits of its ability to solve different tasks.

Talk is cheap, and in reality, very few AI/ML practitioners have the opportunity or ability to build larger models due to high financial requirements, investment willingness, engineering capabilities, and technical enthusiasm from research institutions. There are probably no more than 10 institutions that can do this on Earth. However, in the future, there may be a possibility of joint efforts between capable institutions to build a Super-Large model:

All (Resources) for One (Model) and One (Model) for All (People).

Modified from Alexandre Dumas, The Three Musketeers

Reference

  1. OpenAI 2020: Scaling Laws for Neural Language Models (https://arxiv.org/abs/2001.08361)
  2. DeepMind 2022: Training Compute-Optimal Large Language Models (https://arxiv.org/abs/2203.15556)
  3. BIG-bench Project Team: 2023: Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models (https://arxiv.org/abs/2206.04615)
  4. Google 2023: Inverse scaling can become U-shaped (https://arxiv.org/abs/2211.02011)

What’s Next?

Technical Review 04: Human-Computer Interface: From In Context Learning to Instruct Understanding (ChatGPT)

Previous Blogs