Deep ConvNets for Oracle Bone Script Recognition with PyTorch and Qt-GUI

Shang Dynasty Oracle Bone Scripts Images

1. Project Background

This blog demonstrates how to use Pytorch to build deep convolutional neural networks and use Qt to create the GUI with the pre-trained model. The final app runs like the figure below.

Qt GUI with pre-trained Deep ConvNets model for Oracle Bone Scripts Recognition: Model predicts the Oracle Bone Script ‘合’ with 99.8% Acc.

The five original oracle bone scripts in this sample image can be translated into modern Chinese characters as “贞,今日,其雨?” (Test: Today, will it rain?)

Please note that I am not an expert in the ancient Chinese language, and I think the translation may not be that accurate. But in the GUI, the user can draw the script in the input panel and then click the run button to get the top 10 Chinese characters ranked by probabilities. The highest result is presented with green background colour and 99.8% accuracy.

I will assume that readers have a basic understanding of the deep learning model, middle-level skills of python programming, and know a little about UX/UI design with Qt. There are awesome free tutorials on the internet or one could spend a few dollars to join online courses. I see no hurdles for people mastering these skills.

The following sections are arranged with the topics as follows. Explain the basic requirements for this project and then cover all the basic steps in detail:

  1. Init the project
  2. Create the Python Environment and Install the Dependencies
  3. Download the Raw Data and Preprocess the Data
  4. Build the Model with Pytorch
    • Review the Image
    • Test the Dataloader
    • Build the Deep ConvNets Model
    • Test the Model with Sample Images
  5. Test the Model with Qt-GUI

The source code can be found on my GitHub Repo: Oracle-Bone-Script-Recognition: Step by Step Demo; the README file contains all the basic steps to run on your local machine.

2. Basic Requirements

I used cookiecutter package to generate a skeleton of the project.

There are some opinions implicit in the project structure that has grown out of our experience with what works and what doesn’t when collaborating on data science projects. Some of the opinions are about workflows, and some of the opinions are about tools that make life easier.

  • Data is immutable
  • Notebooks are for exploration and communication (not for production)
  • Analysis is a DAG (I used the ‘Makefile’ to create command modules of the workflow)
  • Build from the environment up

Starting Requirements

  • conda 4.12.0
  • Python 3.7, 3.8 I would suggest using Anaconda for the installation of Python. Or you can just install the miniconda package, which saves a lot of space on your hard drive

3. Tutorial Step by Step

Step 1: Init the project

Use ‘git’ command to clone the project from Github.

git clone 
# or
# gh repo clone cuicaihao/deep-learning-for-oracle-bone-script-recognition

Check the project structure.

cd deep-learning-for-oracle-bone-script-recognition
ls -l
# or 
# tree -h

You will see a similar structure as the one shown in the end. Meanwhile, you could open the ‘Makefile’ to see the raw commands of the workflow.

Step 2: Create the Python Environment and Install the Dependencies

The default setting is to create a virtual environment with Python 3.8.

make create_environment

Then, we activate the virtual environment.

conda activate oracle-bone-script-recognition

Then, we install the dependencies.

make requirements

The details of the dependencies are listed in the ‘requirements.txt’ file.

Step 3: Download the Raw Data and Preprocess the Data

This first challenge is to find a data set with oracle born scripts; I found this website 甲骨文 and its GitHub Repo which provided all the script images and image-to-label database I need. The image folder contains 1602 images, and the image name to Chinese character (key-value) pairs are stored in JSON, SQL and DB format, making it the perfect data set for our project startup.


we can download the raw data of the images and database of the oracle bone script. Then we will download the raw data and preprocess the data in the project data/raw directory.

make download_data

The basic step is to download repo, unzip the repo, and then make a copy of the images and database (JSON) file to the project data/raw directory.

Then, we preprocess the data to create a table (CSV file) for model development.

make create_dataset

The source code is located at src/data/ The make command will provide the input arguments to this script to create two tables (CSV file) in the project data/processed directory.

The Raw Data of the Oracle Bone Scripts with the Image-Name Paris.

Step 4: Build the Model with Pytorch

This section is about model development.

4.1 Review Image and DataLoader

Before building the model, we need to review the image and data loader.

make image_review

This step will generate a series of images of the oracle bone script image sample to highlight the features of the images, such as colour, height, and width.

Besides, we show the results of different binarization methods of the original greyscale image with the tool provided by the scikit-image package.

The source code is located at src/visualization/

4.2 Test the DataLoader

We can still test the Dataloader with the command.

make test_dataloader

This will generate an 8×8 grid image of the oracle bone script image sample. The source code is located at src/data/

In the image below, it generates a batch of 64 images with its label(Chinese characters) on the top-left corner.

A Batch of 8×8 Grid Images Prepared for Deep ConvNets Model

4.3 Build the Deep Convolutional Neural Networks Model

Now we can build the model. The source code is located at src/models/ This command will generate the model and the training process records at models/.

make train_model

(Optional) One can monitor the process by using the tensorboard command.

# Open another terminal
tensorboard --logdir=models/runs

Then open the link: http://localhost:6006/ to monitor the training and validation losses, see the training batch images, and see the model graph.

After the training process, there is one model file named model_best in the models/ directory.

4.4 Test the Model with Sample Image

The pre-trained model is located at models/model_best. We can test the model with the sample image. I used the image (3653610.jpg) of the oracle bone script dataset in the Makefile test_model scripts, readers can change it to other images.

make test_model
# ...
# Chinese Character Label = 安
#      label name  count       prob
# 151    151    安      3 1.00000000
# 306    306    富      2 0.01444918
# 357    357    因      2 0.00002721
# 380    380    家      2 0.00001558
# 43      43    宜      5 0.00001120
# 586    586    会      1 0.00000136
# 311    311    膏      2 0.00000134
# 5        5    执      9 0.00000031
# 354    354    鲧      2 0.00000026
# 706    706    室      1 0.00000011

The command will generate a sample figure with a predicted label on the top and a table with the top 10 predicted labels sorted by the probability.

Model Prediction Label and Input Image

Step 5: Test the Model with Qt-GUI

Now, we have the model, we can test the model with the Qt-GUI. I used Qt Designer to create the UI file at src/ui/obs_gui.ui. Then, use the pyside6-uic command to get the Python code from the UI file `pyside6-uic src/ui/obs_gui.ui -o src/ui/

Activate the GUI by

# or 
# make test_gui
Draw the script of the ‘和’ and Run the Prediction
Website of the Oracle Bone Script (Index H)

The GUI contains an input drawing window for the user to scratch the oracle bone script as an image.
After the user finishes the drawing and clicks the RUN button. The input image is converted to a tensor (np.array) and fed into the model. The model will predict the label of the input image with probability which is shown on the top  Control Panel of the GUI.

  • Text Label 1: Show the Chinese character label of the input image ID and the Prediction Probability. If the Acc > 0.5, the label background colour is green; if the Acc < 0.0001 the label background colour is red, otherwise, the label background colour is yellow.
  • Test Label 2: Show the top 10 predicted labels sorted by the probability.
  • Clean Button: Clean the input image.
  • Run Button: Run the model with the input image.
  • Translate Button: (Optional) Translate the Chinese character label to English. I did not find a good Translation service for a single character, so I left this park for future development or for the readers to think about it.

4 Summary

This repository is inspired by the most recent DeepMind’s work Predicting the past with Ithaca, I did not dig into the details of the work due to limited resources.

I think the work is very interesting, and I want to share my experience with the readers by trying a different language like Oracle Bone Scripts. It is also a good starter example for me to revisit the PyTorch deep learning packages and the qt-gui toolboxes.

I will be very grateful if you can share your experience with more readers. If you like this repository, please upvote/star it.


I made a formal statement on my GitHub on the first day of 2022, claiming that I would create 10 blogs on technology, but I got flattened by daily business and other works. But be a man of his words, I made my time to serve the community. Here comes the first one.

If you find the repository useful, please consider donating to the Standford Rural Area Education Program ( Policy change and research to help China’s invisible poor.


  1. Cookiecutter Data Science
  2. PyTorch Tutorial
  3. Qt for Python
  4. GitHub Chinese-Traditional-Culture/JiaGuWen
  5. Website of the Oracle Bone Script Index


Aerial Image Segmentation with Deep Learning on PyTorch

Aerial Image Labeling addresses a core topic in remote sensing: the automatic pixel-wise labelling of aerial imagery. The UNet leads to more advanced design in Aerial Image Segmentation. Future updates will gradually apply those methods to this repository.

I created the Github Repo used only one sample (kitsap11.tif ) from the public dataset (Inria Aerial Image Labelling ) to demonstrate the power of deep learning.

The original sample has been preprocessed into 1000×1000 with a 1.5-meter resolution. The following image shows the models prediction on the RGB images.

Programming details are updated on Github repos.

Dataset Features

The Inria Aerial Image Labeling addresses a core topic in remote sensing: the automatic pixel-wise labelling of aerial imagery (link to paper). Coverage of 810 km² (405 km² for training and 405 km² for testing) Aerial orthorectified colour imagery with a spatial resolution of 0.3 m Ground truth data for two semantic classes: building and not building (publicly disclosed only for the training subset) The images cover dissimilar urban settlements, ranging from densely populated areas (e.g., San Francisco’s financial district) to alpine towns (e.g,. Lienz in Austrian Tyrol).

Instead of splitting adjacent portions of the same images into the training and test subsets, different cities are included in each of the subsets. For example, images over Chicago are included in the training set (and not on the test set) and images over San Francisco are included on the test set (and not on the training set). The ultimate goal of this dataset is to assess the generalization power of the techniques: while Chicago imagery may be used for training, the system should label aerial images over other regions, with varying illumination conditions, urban landscape and time of the year.

The dataset was constructed by combining public domain imagery and public domain official building footprints.


The full data set is about 21 GB. In this repo, I select the following image as examples:

  • RGB: AerialImageDataset/train/images/kitsap11.tif (75MB)
  • GT: AerialImageDataset/train/gt/kitsap11.tif (812KB)

The original *.tif (GeoTIFF) image can be converted to a png image with the following code and the gdal package.



Deep Learning Specialization on Coursera


This repo contains all my work for this specialization. The code and images, are taken from Deep Learning Specialization on Coursera.

In five courses, you are going learn the foundations of Deep Learning, understand how to build neural networks, and learn how to lead successful machine learning projects. You will learn about Convolutional networks, RNNs, LSTM, Adam, Dropout, BatchNorm, Xavier/He initialization, and more. You will work on case studies from healthcare, autonomous driving, sign language reading, music generation, and natural language processing. You will master not only the theory, but also see how it is applied in industry. You will practice all these ideas in Python and in TensorFlow, which we will teach.

Continue reading “Deep Learning Specialization on Coursera”

Street View Image Segmentation with PyTorch and Facebook Detectron2 (CPU+GPU)

In this post, I would like to share my practice with Facebook’s new Detectron2 package on macOS without GPU support for street view panoptic segmentation.  If you want to create the following video by yourself, this post is all you need. This demo video clip is from my car’s dashcam footages from Preston, Melbourne. I used the PyTorch and Detectron2 to create this video with segmentation masks.

Continue reading “Street View Image Segmentation with PyTorch and Facebook Detectron2 (CPU+GPU)”

How to Build an Artificial Intelligent System (I)

Phase 1: Problem assessment – Determine the problem’s characteristics.

What is an intelligent system?

The process of building Intelligent knowledge-based system has been called knowledge engineering since the 80s. It usually contains six phases: 1. Problem assessment; 2. Data and knowledge acquisition; 3. Development of a prototype system; 4. Development of a complete system; 5. Evaluation and revision of the system; 6. Integration and maintenance of the system [1].

Continue reading “How to Build an Artificial Intelligent System (I)”

Roads from Above: Augmenting Civil Engineering & Geospatial Workflows with Machine Learning

Road from Above is partly based on my Australia Postgraduate Intern Projects (Computer Vision and Machine Learning for Feature Extraction) within Aureon Group in Melbourne.

Aurecon’s experts, across Cape Town, Melbourne and Auckland offices, have been teamed up to develop and test approaches that capture and validate new and existing measurements of the metropolitan road network. Due to the confidentiality, we reduced the resolutions of the aerial images and only opened limited results on the public domain at Thanks to Greg More, the design of this website got the best feedback from the workshop (Visualization for AI Explainability) of the IEEE VIS 2018 conference in Berlin, Germany

Visualization for AI Explainability: Projections and Dimensionality Reduction. The goal of this workshop is to initiate a call for “explainable” that explain how AI techniques work using visualizations. We believe the VIS community can leverage their expertise in creating visual narratives to bring new insight into the often obfuscated complexity of AI systems.

Road from Above

Continue reading “Roads from Above: Augmenting Civil Engineering & Geospatial Workflows with Machine Learning”

QR Code Detector with Webcam (Python / OpenCV / Pyzbar)

This project is forked from zbar library, I added some modifications, so the webcam can be used as an image reader to detect QR and Barcodes.


Continue reading “QR Code Detector with Webcam (Python / OpenCV / Pyzbar)”

Fast Neural Style Transfer by PyTorch (Mac OS)

2021-Jan-31: The git repo has been upgraded from PyTorch-0.3.0 to PyTorch-1.7.0. with Python=3.8.3.

Continue my last post Image Style Transfer Using ConvNets by TensorFlow (Windows), this article will introduce the Fast Neural Style Transfer by PyTorch on MacOS.

The original program is written in Python, and uses [PyTorch], [SciPy]. A GPU is not necessary but can provide a significant speedup especially for training a new model. Regular sized images can be styled on a laptop or desktop using saved models.

More details about the algorithm could be found in the following papers:

  1. Perceptual Losses for Real-Time Style Transfer and Super-Resolution (2016).
  2. Instance Normalization: The Missing Ingredient for Fast Stylization (2017).

If you could not download the papers, here are the Papers.

You can find all the source code and images (updated in 2021) at my GitHub: fast_neural_style .

Continue reading “Fast Neural Style Transfer by PyTorch (Mac OS)”

Image Style Transfer Using ConvNets by TensorFlow (Windows)

This post is talking about how to setup a basic developing environment of Google’s TensorFlow on Windows 10 and apply the awesome application called “Image style transfer”, which is using the convolutional neural networks to create artistic images based on the content image and style image provided by the users.

The early research paper is “A Neural Algorithm of Artistic Style” by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge on arXiv. You could also try their website application on DeepArt where there are a lot of amazing images uploaded by the people all over the world. DeepArt has apps on Google Play and App Store, but I suggest you use a much faster app Prisma, which is as awesome as DeepArt! [More to read: Why-does-the-Prisma-app-run-so-fast].

Moreover, I strongly recommend the formal paper Image Style Transfer Using Convolutional Neural Networks by the same authors published on CVPR-2016. This paper gives more details about how this method works. In short, the following two figures cover the idea behind the magic.

Continue reading “Image Style Transfer Using ConvNets by TensorFlow (Windows)”

%d bloggers like this: