How to Build an Artificial Intelligent System (II)

This post is following upgrade with respect to the early post How to Build an Artificial Intelligent System (I) The last one is focused on introducing the six phases of the building an intelligent system, and explaining the details of the Problem Assesment phase.

In the following content, I will address the rest phases and key steps during the building process.  Readers can download the keynotes here: Building an Intelligent System with Machine Learning.

Continue reading “How to Build an Artificial Intelligent System (II)”

How to Build an Artificial Intelligent System (I)

Phase 1: Problem assessment – Determine the problem’s characteristics.

What is an intelligent system?

The process of building Intelligent knowledge-based system has been called knowledge engineering since the 80s. It usually contains six phases: 1. Problem assessment; 2. Data and knowledge acquisition; 3. Development of a prototype system; 4. Development of a complete system; 5. Evaluation and revision of the system; 6. Integration and maintenance of the system [1].

Continue reading “How to Build an Artificial Intelligent System (I)”

Increasing Transparency into What It Takes to Achieve Performance Gains of Machine Learning Algorithms

The computations required for Deep Learning research have been doubling every few months, resulting in an estimated 300,000x increase from 2012 to 2018. AI could account for as much as one-tenth of the world’s electricity use by 2025 according to this article [1].

Continue reading “Increasing Transparency into What It Takes to Achieve Performance Gains of Machine Learning Algorithms”

Just Got a Reviewer Certificate from Data Mining and Knowledge Discovery (WIREs)

Thanks to the Editors and Board of WIREs for supporting me. As an independent reviewer, I will be fair to everyone and never give in to the “scientific mafia” and “citation cartels”.

Data Mining and Knowledge Discovery (WIREs) (Impact Factor: 2.541)

WIREs_Reviewer_Certificate.PNG

Roads from Above: Augmenting Civil Engineering & Geospatial Workflows with Machine Learning

Road from Above is partly based on my Australia Postgraduate Intern Projects (Computer Vision and Machine Learning for Feature Extraction) within Aureon Group in Melbourne.

Aurecon’s experts, across Cape Town, Melbourne and Auckland offices, have been teamed up to develop and test approaches that capture and validate new and existing measurements of the metropolitan road network. Due to the confidentiality, we reduced the resolutions of the aerial images and only opened limited results on the public domain at https://roadsfromabove.netlify.com/. Thanks to Greg More, the design of this website got the best feedback from the workshop (Visualization for AI Explainability) of the IEEE VIS 2018 conference in Berlin, Germany

Visualization for AI Explainability: Projections and Dimensionality Reduction. The goal of this workshop is to initiate a call for “explainable” that explain how AI techniques work using visualizations. We believe the VIS community can leverage their expertise in creating visual narratives to bring new insight into the often obfuscated complexity of AI systems.

Road from Above

Continue reading “Roads from Above: Augmenting Civil Engineering & Geospatial Workflows with Machine Learning”

MacOS X: Installing TensorFlow from Sources [TF Binary Attached]

When I am using TensorFlow on my MacBook Air, I always get annoyed by the warnings comes from nowhere, so I followed the documentation below to build TensorFlow sources into a TensorFlow binary and installed it successfully.  In theory, this will make the TF running faster on my machine.

Here is the document:

If you are a Mac user, you could download the TF binary from here:

Then, you could use conda to initialize an environment with Python=3.6 and install TF by typing:

sudo pip install tensorflow-1.8.0-py2-none-any.whl

Continue reading “MacOS X: Installing TensorFlow from Sources [TF Binary Attached]”

A Taste of TensorFlow on My Android Phone (III)

This is the 3rd post about my implementation of TensorFlow Apps on my Android Phone.

This time I fixed one small bug in the app of  “TF Detect” so the object tracking function could work. The project is compiled by cmake with NDK Archives in this version. You can download the new “apk files here:  Tensorflow_Demo_Debug.apk.

“Once the app is installed it can be started via the “TF Classify”, “TF Detect”, “TF Stylize”, and “TF Speech” icons, which have the orange TensorFlow logo as their icon. 

Continue reading “A Taste of TensorFlow on My Android Phone (III)”

QR Code Detector with Webcam (Python / OpenCV / Pyzbar)

This project is forked from zbar library, I added some modifications, so the webcam can be used as an image reader to detect QR and Barcodes.

code128_1

Continue reading “QR Code Detector with Webcam (Python / OpenCV / Pyzbar)”

%d bloggers like this: