

## GPU Performance Details: Host PC

**Contents:**

- System Configuration
- Results for datatype double
  - MTimes (double)
  - Backslash (double)
  - FFT (double)
- Results for datatype single
  - MTimes (single)
  - Backslash (single)
  - FFT (single)

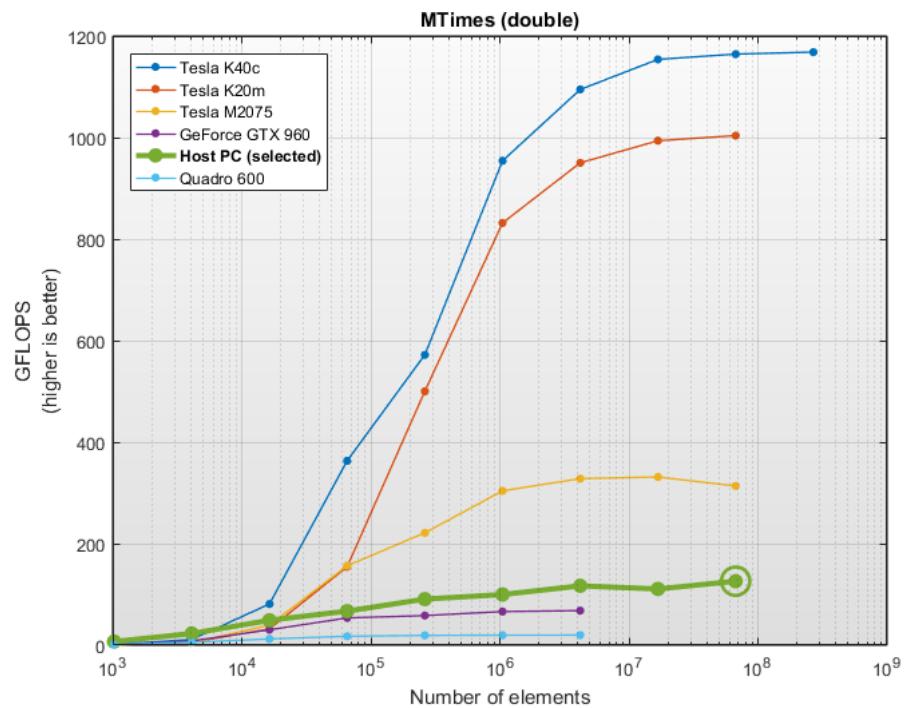
## System Configuration

MATLAB Release: R2016b

### Host

|               |                                          |
|---------------|------------------------------------------|
| Name          | Intel(R) Core(TM) i5-6400T CPU @ 2.20GHz |
| Clock         | 2201 MHz                                 |
| Cache         | 1024 KB                                  |
| NumProcessors | 4                                        |
| OSType        | Windows                                  |
| OSVersion     | Microsoft Windows 10 Home                |

## Results for MTimes (double)


These results show the performance of the GPU or host PC when calculating a [matrix multiplication](#) of two NxN real matrices. The number of operation assumed to be  $2 \times N^3 - N^2$ .

This calculation is usually compute-bound, i.e. the performance depends mainly on how fast the GPU or host PC can perform floating-point operations.

### Raw data for Host PC - MTimes (double)

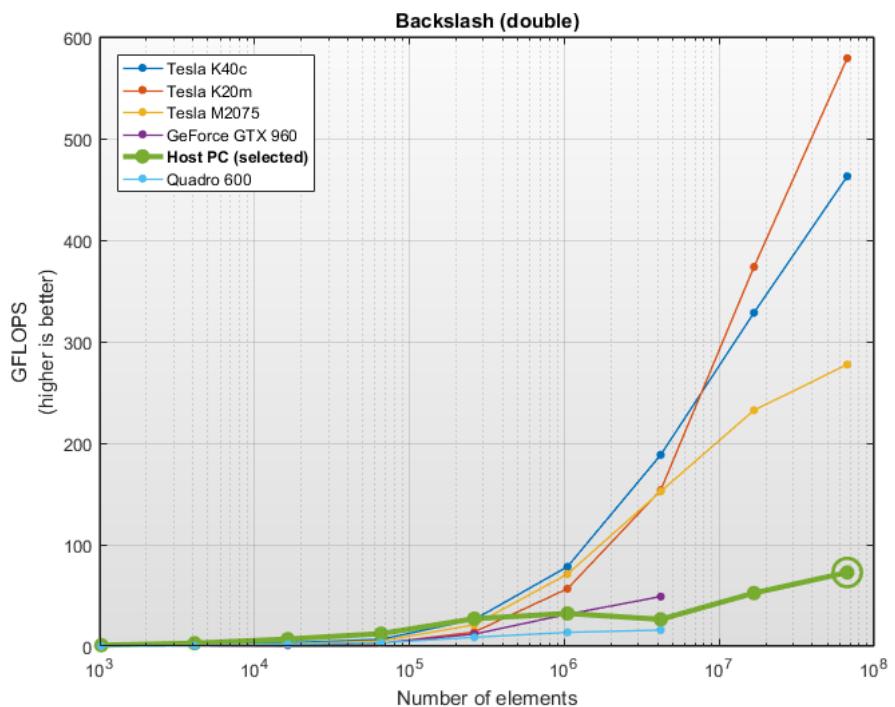
| Array size (elements) | Num Operations           | Time (ms)      | GigaFLOPS     |
|-----------------------|--------------------------|----------------|---------------|
| 1,024                 | 64,512                   | 0.01           | 7.12          |
| 4,096                 | 520,192                  | 0.02           | 22.95         |
| 16,384                | 4,177,920                | 0.09           | 49.09         |
| 65,536                | 33,488,896               | 0.50           | 67.10         |
| 262,144               | 268,173,312              | 2.95           | 90.79         |
| 1,048,576             | 2,146,435,072            | 21.52          | 99.76         |
| 4,194,304             | 17,175,674,880           | 146.93         | 116.90        |
| 16,777,216            | 137,422,176,256          | 1241.25        | 110.71        |
| <b>67,108,864</b>     | <b>1,099,444,518,912</b> | <b>8720.79</b> | <b>126.07</b> |

(N gigaflops =  $N \times 10^9$  operations per second)



## Results for Backslash (double)

These results show the performance of the GPU or host PC when calculating the [matrix left division](#) of an NxN matrix with an Nx1 vector. The number of operations is assumed to be  $2/3 \times N^3 + 3/2 \times N^2$ .


This calculation is usually compute-bound, i.e. the performance depends mainly on how fast the GPU or host PC can perform floating-point operations.

### Raw data for Host PC - Backslash (double)

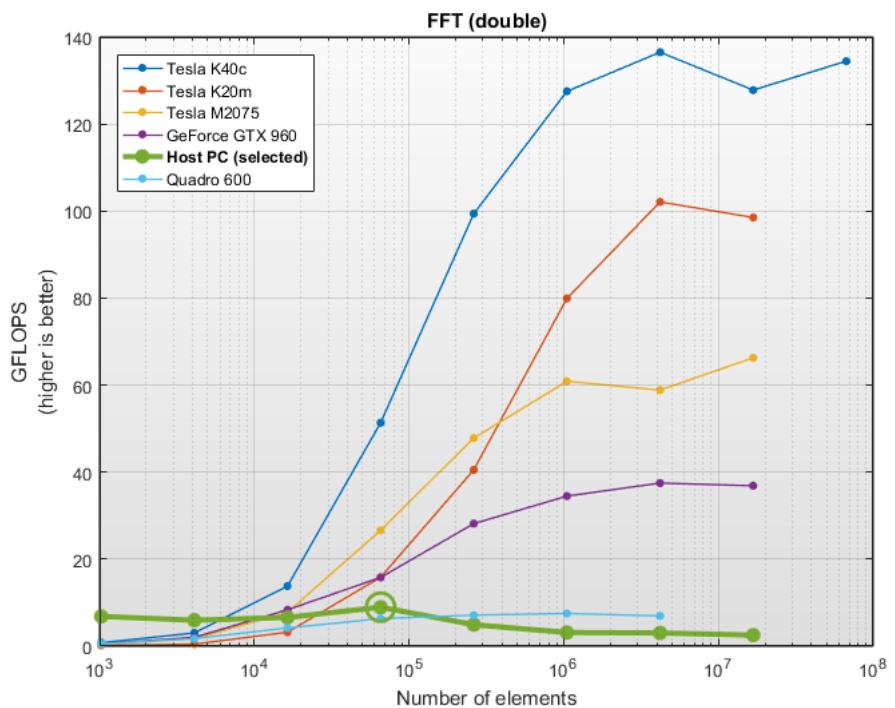
| Array size | Num  | Time  | GigaFLOPS |
|------------|------|-------|-----------|
| 1,024      | ~100 | ~0.01 | ~10       |

| (elements)        | Operations             | (ms)           |              |
|-------------------|------------------------|----------------|--------------|
| 1,024             | 23,381                 | 0.02           | 0.97         |
| 4,096             | 180,907                | 0.06           | 2.90         |
| 16,384            | 1,422,677              | 0.20           | 6.99         |
| 65,536            | 11,283,115             | 0.92           | 12.32        |
| 262,144           | 89,871,701             | 3.32           | 27.09        |
| 1,048,576         | 717,400,747            | 22.26          | 32.22        |
| 4,194,304         | 5,732,914,517          | 216.86         | 26.44        |
| 16,777,216        | 45,838,150,315         | 875.83         | 52.34        |
| <b>67,108,864</b> | <b>366,604,539,221</b> | <b>5050.73</b> | <b>72.58</b> |

(N gigaflops =  $N \times 10^9$  operations per second)



## Results for FFT (double)


These results show the performance of the GPU or host PC when calculating the [Fast-Fourier-Transform](#) of a vector of complex numbers. The number of operations for a vector of length N is assumed to be  $5 * N * \log_2(N)$ .

This calculation is usually memory-bound, i.e. the performance depends mainly on how fast the GPU or host PC can read and write data.

### Raw data for Host PC - FFT (double)

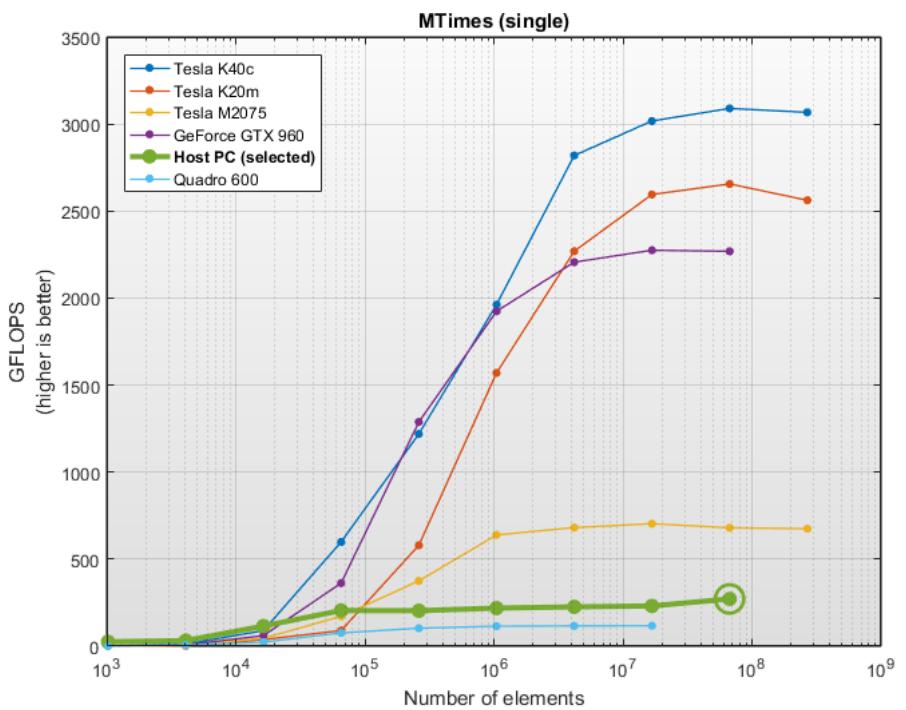
| Array size (elements) | Num Operations   | Time (ms)   | GigaFLOPS   |
|-----------------------|------------------|-------------|-------------|
| 1,024                 | 51,200           | 0.01        | 6.84        |
| 4,096                 | 245,760          | 0.04        | 5.96        |
| 16,384                | 1,146,880        | 0.17        | 6.61        |
| <b>65,536</b>         | <b>5,242,880</b> | <b>0.59</b> | <b>8.96</b> |
| 262,144               | 23,592,960       | 4.78        | 4.94        |
| 1,048,576             | 104,857,600      | 33.34       | 3.15        |
| 4,194,304             | 461,373,440      | 151.62      | 3.04        |
| 16,777,216            | 2,013,265,920    | 792.33      | 2.54        |

(N gigaflops =  $N \times 10^9$  operations per second)



## Results for MTimes (single)

These results show the performance of the GPU or host PC when calculating a [matrix multiplication](#) of two NxN real matrices. The number of operations assumed to be  $2 * N^3 - N^2$ .


This calculation is usually compute-bound, i.e. the performance depends mainly on how fast the GPU or host PC can perform floating-point operations.

### Raw data for Host PC - MTimes (single)

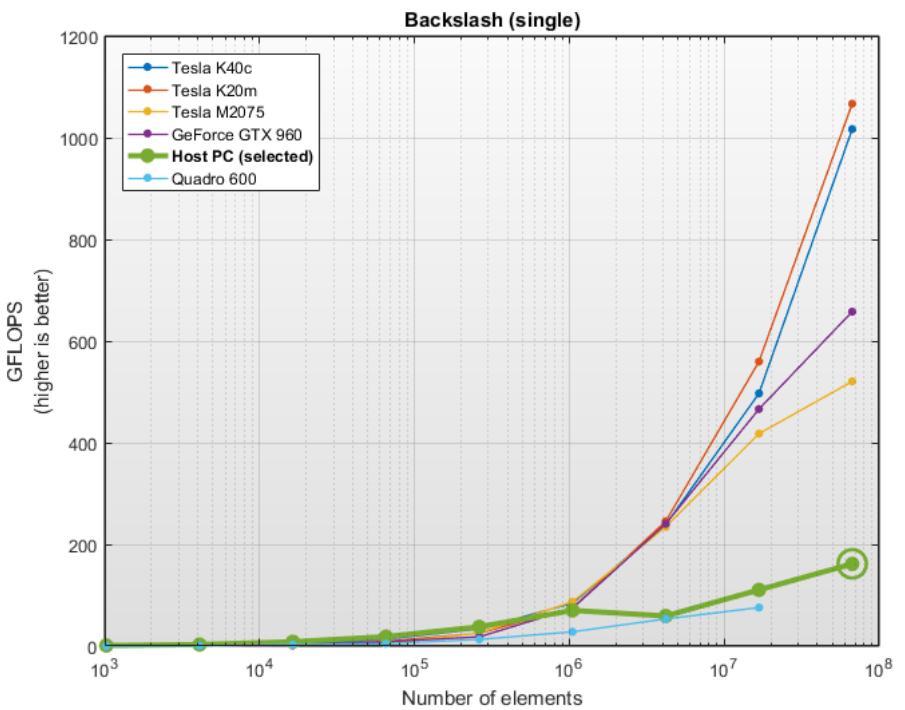
| Array size (elements) | Num Operations | Time (ms) | GigaFLOPS |
|-----------------------|----------------|-----------|-----------|
| 1,024                 | 64,512         | 0.00      | 25.13     |
| 4,096                 | 520,192        | 0.02      | 31.90     |
| 16,384                | 4,177,920      | 0.04      | 115.50    |
| 65,536                | 33,488,896     | 0.16      | 205.24    |
| 262,144               | 268,173,312    | 1.32      | 203.83    |

|                   |                          |                |               |
|-------------------|--------------------------|----------------|---------------|
| 1,048,576         | 2,146,435,072            | 9.81           | 218.86        |
| 4,194,304         | 17,175,674,880           | 76.02          | 225.93        |
| 16,777,216        | 137,422,176,256          | 594.40         | 231.19        |
| <b>67,108,864</b> | <b>1,099,444,518,912</b> | <b>4048.60</b> | <b>271.56</b> |

(N gigaflops =  $N \times 10^9$  operations per second)



## Results for Backslash (single)


These results show the performance of the GPU or host PC when calculating the [matrix left division](#) of an  $N \times N$  matrix with an  $N \times 1$  vector. The number of operations is assumed to be  $2/3 \times N^3 + 3/2 \times N^2$ .

This calculation is usually compute-bound, i.e. the performance depends mainly on how fast the GPU or host PC can perform floating-point operations.

Raw data for Host PC - Backslash (single)

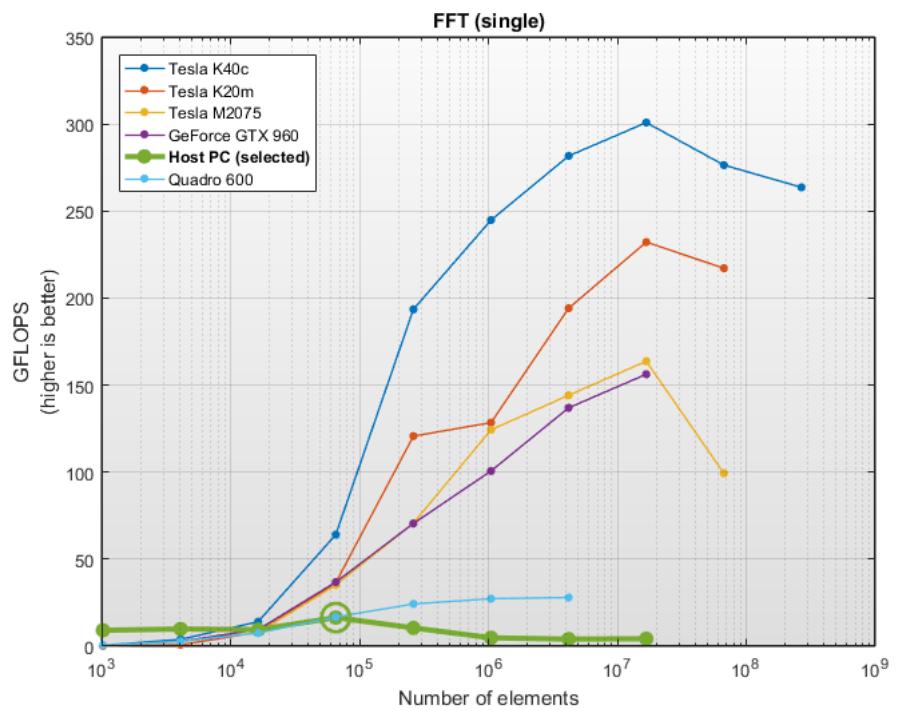
| Array size (elements) | Num Operations         | Time (ms)      | GigaFLOPS     |
|-----------------------|------------------------|----------------|---------------|
| 1,024                 | 23,381                 | 0.02           | 1.03          |
| 4,096                 | 180,907                | 0.06           | 2.95          |
| 16,384                | 1,422,677              | 0.17           | 8.40          |
| 65,536                | 11,283,115             | 0.61           | 18.57         |
| 262,144               | 89,871,701             | 2.38           | 37.76         |
| 1,048,576             | 717,400,747            | 10.23          | 70.14         |
| 4,194,304             | 5,732,914,517          | 96.87          | 59.18         |
| 16,777,216            | 45,838,150,315         | 414.72         | 110.53        |
| <b>67,108,864</b>     | <b>366,604,539,221</b> | <b>2267.03</b> | <b>161.71</b> |

(N gigaflops =  $N \times 10^9$  operations per second)



## Results for FFT (single)

These results show the performance of the GPU or host PC when calculating the [Fast-Fourier-Transform](#) of a vector of complex numbers. The number of operations for a vector of length N is assumed to be  $5 \times N \times \log_2(N)$ .


This calculation is usually memory-bound, i.e. the performance depends mainly on how fast the GPU or host PC can read and write data.

Raw data for Host PC - FFT (single)

| Array size (elements) | Num Operations   | Time (ms)   | GigaFLOPS    |
|-----------------------|------------------|-------------|--------------|
| 1,024                 | 51,200           | 0.01        | 9.12         |
| 4,096                 | 245,760          | 0.02        | 9.89         |
| 16,384                | 1,146,880        | 0.12        | 9.51         |
| <b>65,536</b>         | <b>5,242,880</b> | <b>0.32</b> | <b>16.43</b> |
| 262,144               | 23,592,960       | 2.25        | 10.50        |

|            |               |        |      |
|------------|---------------|--------|------|
| 1,048,576  | 104,857,600   | 21.80  | 4.81 |
| 4,194,304  | 461,373,440   | 113.83 | 4.05 |
| 16,777,216 | 2,013,265,920 | 468.63 | 4.30 |

(N gigaflops =  $N \times 10^9$  operations per second)



Generated by gpuBench v1.7: 2017-02-19 15:03:10

[Back to summary](#)